5 resultados para in situ analysis
em Aston University Research Archive
Resumo:
The association between diffuse-type beta -amyloid (AP) deposits and neuronal cell bodies in Alzheimer's disease (AD) and Down's syndrome (DS) could result from the secretion of AP from clusters of neurons in situ or the diffusion of A beta from cell processes, glial cells or blood vessels. To decide between these hypotheses, spatial pattern analysis was used to study the relationship between the degree of clustering of neuronal cell bodies and the presence of diffuse deposits in the temporal lobe of patients with DS. Significant clustering of neuronal cell bodies was present in 17/24 (71%) of brain areas studied. in addition, in 23/24 (96%) of brain areas, there was a positive correlation between the presence of diffuse deposits and the density of neurons. Hence, the data support the hypothesis that diffuse deposits develop in situ mainly as a result of the secretion of A beta by local clusters of neurons rather than by significant diffusion. Furthermore, the size of a diffuse deposit is likely to be determined by the number of neurons within a cluster which secrete A beta. The number and density of neurons could also be a factor determining the evolution of a diffuse into a mature amyloid deposit.
Resumo:
One of the main objectives of this study was to functionalise various rubbers (i.e. ethylene propylene copolymer (EP), ethylene propylene diene terpolymer (EPDM), and natural rubber (NR)) using functional monomers, maleic anhydride (MA) and glycidyl methacrylate (GMA), via reactive processing routes. The functionalisation of the rubber was carried out via different reactive processing methods in an internal mixer. GMA was free-radically grafted onto EP and EPDM in the melt state in the absence and presence of a comonomer, trimethylolpropane triacrylate (TRlS). To optinuse the grafting conditions and the compositions, the effects of various paranleters on the grafting yields and the extent of side reactions were investigated. Precipitation method and Soxhlet extraction method was established to purifY the GMA modified rubbers and the grafting degree was determined by FTIR and titration. It was found that without TRlS the grafting degree of GMA increased with increasing peroxide concentration. However, grafting was low and the homopolymerisation of GMA and crosslinking of the polymers were identified as the main side reactions competing with the desired grafting reaction for EP and EPDM, respectively. The use of the tri-functional comonomer, TRlS, was shown to greatly enhance the GMA grafting and reduce the side reactions in terms of the higher GMA grafting degree, less alteration of the rheological properties of the polymer substrates and very little formation of polyGMA. The grafting mechanisms were investigated. MA was grafted onto NR using both thermal initiation and peroxide initiation. The results showed clearly that the reaction of MA with NR could be thermally initiated above 140°C in the absence of peroxide. At a preferable temperature of 200°C, the grafting degree was increased with increasing MA concentration. The grafting reaction could also be initiated with peroxide. It was found that 2,5-dimethyl-2,5-bis(ter-butylproxy) hexane (TIOI) was a suitable peroxide to initiate the reaction efficiently above I50°C. The second objective of the work was to utilize the functionalised rubbers in a second step to achieve an in-situ compatibilisation of blends based on poly(ethylene terephthalate) (PET), in particular, with GMA-grafted-EP and -EPDM and the reactive blending was carried out in an internal mixer. The effects of GMA grafting degree, viscosities of GMAgrafted- EP and -EPDM and the presence of polyGMA in the rubber samples on the compatibilisation of PET blends in terms of morphology, dynamical mechanical properties and tensile properties were investigated. It was found that the GMA modified rubbers were very efficient in compatibilising the PET blends and this was supported by the much finer morphology and the better tensile properties. The evidence obtained from the analysis of the PET blends strongly supports the existence of the copolymers through the interfacial reactions between the grafted epoxy group in the GMA modified rubber and the terminal groups of PET in the blends.
Resumo:
The aim of this work is to improve some of the less desirable properties of bio-oil via the catalytic fast pyrolysis of sugarcane bagasse using a novel supported molybdenum carbide (20 wt.% MoC/AlO ) catalyst. Proximate and elemental analysis of the bagasse were carried out to determine the moisture, ash, carbon, hydrogen, nitrogen and oxygen content. The ground pellets were classified in sieves to a size range of 0.25-1 mm and were pyrolysed in a 300 g h fluidised bed reactor at 500 C. MoC/AlO replaced the sand in the fluidised bed reactor in different proportions (0 wt.%, 12 wt.%, 25 wt.% and 50 wt.%) to investigate the effect of this catalyst on the pyrolysis products. Bio-oil yield results showed that ground sugarcane bagasse pellets gave high organic yields in the bio-oil of 60.5 wt.% on dry feed with a total liquid yield of 73.1 wt.% on dry feed without catalyst. Increasing the catalyst proportions in the fluidised bed reduced bio-oil yields, significantly reduced sugars (as a-levoglucosan) concentration and increased furanics and phenolics concentration in the bio-oil. It was observed that the higher the concentration of the 20 wt.% MoC/AlO catalyst in the fluidised bed the lower the viscosity of the bio-oil. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Ethylene-propylene rubber (EPR) functionalised with glycidyl methacrylate (GMA) (f-EPR) during melt processing in the presence of a co-monomer, such as trimethylolpropane triacrylate (Tris), was used to promote compatibilisation in blends of polyethylene terephthalate (PET) and f-EPR, and their characteristics were compared with those of PET/f-EPR reactive blends in which the f-EPR was functionalised with GMA via a conventional free radical melt reaction (in the absence of a co-monomer). Binary blends of PETand f-EPR (with two types of f-EPR prepared either in presence or absence of the co-monomer) with various compositions (80/20, 60/40 and 50/50 w/w%) were prepared in an internal mixer. The blends were evaluated by their rheology (from changes in torque during melt processing and blending reflecting melt viscosity, and their melt flow rate), morphology scanning electron microscopy (SEM), dynamic mechanical properties (DMA), Fourier transform infrared (FTIR) analysis, and solubility (Molau) test. The reactive blends (PET/f-EPR) showed a marked increase in their melt viscosities in comparison with the corresponding physical (PET/EPR) blends (higher torque during melt blending), the extent of which depended on the amount of homopolymerised GMA (poly-GMA) present and the level of GMA grafting in the f-EPR. This increase was accounted for by, most probably, the occurrence of a reaction between the epoxy groups of GMA and the hydroxyl/carboxyl end groups of PET. Morphological examination by SEM showed a large improvement of phase dispersion, indicating reduced interfacial tension and compatibilisation, in both reactive blends, but with the Tris-GMA-based blends showing an even finer morphology (these blends are characterised by absence of poly-GMA and presence of higher level of grafted GMA in its f-EPR component by comparison to the conventional GMA-based blends). Examination of the DMA for the reactive blends at different compositions showed that in both cases there was a smaller separation between the glass transition temperatures compared to their position in the corresponding physical blends, which pointed to some interaction or chemical reaction between f-EPR and PET. The DMA results also showed that the shifts in the Tgs of the Tris-GMA-based blends were slightly higher than for the conventional GMA-blends. However, the overall tendency of the Tgs to approach each other in each case was found not to be significantly different (e.g. in a 60/40 ratio the former blend shifted by up to 4.5 °C in each direction whereas in the latter blend the shifts were about 3 °C). These results would suggest that in these blends the SEM and DMA analyses are probing uncorrelatable morphological details. The evidence for the formation of in situ graft copolymer between the f-EPR and PET during reactive blending was clearly illustrated from analysis by FTIR of the separated phases from the Tris-GMA-based reactive blends, and the positive Molau test pointed out to graft copolymerisation in the interface. A mechanism for the formation of the interfacial reaction during the reactive blending process is proposed.
Resumo:
This paper proposes an in situ diagnostic and prognostic (D&P) technology to monitor the health condition of insulated gate bipolar transistors (IGBTs) used in EVs with a focus on the IGBTs' solder layer fatigue. IGBTs' thermal impedance and the junction temperature can be used as health indicators for through-life condition monitoring (CM) where the terminal characteristics are measured and the devices' internal temperature-sensitive parameters are employed as temperature sensors to estimate the junction temperature. An auxiliary power supply unit, which can be converted from the battery's 12-V dc supply, provides power to the in situ test circuits and CM data can be stored in the on-board data-logger for further offline analysis. The proposed method is experimentally validated on the developed test circuitry and also compared with finite-element thermoelectrical simulation. The test results from thermal cycling are also compared with acoustic microscope and thermal images. The developed circuitry is proved to be effective to detect solder fatigue while each IGBT in the converter can be examined sequentially during red-light stopping or services. The D&P circuitry can utilize existing on-board hardware and be embedded in the IGBT's gate drive unit.