14 resultados para impulse control disorder
em Aston University Research Archive
Resumo:
Dyslexia and attentional difficulty have often been linked, but little is known of the nature of the supposed attentional disorder. The Sustained Attention to Response Task (SART: Robertson, Manly, Andrade, Baddeley and Yiend, 1997) was designed as a measure of sustained attention and requires the withholding of responses to rare (one in nine) targets. To investigate the nature of the attentional disorder in dyslexia, this paper reports two studies which examined the performance of teenagers with dyslexia and their age-matched controls on the SART, the squiggle SART (a modification of the SART using novel and unlabellable stimuli rather than digits) and the go-gap-stop test of response inhibition (GGST). Teenagers with dyslexia made significantly more errors than controls on the original SART, but not the squiggle SART. There were no group differences on the GGST. After controlling for speed of reaction time in a sequential multiple regression predicting SART false alarms, false alarms on the GGST accounted for up to 22% extra variance in the control groups (although less on the squiggle SART) but negligible amounts of variance in the dyslexic groups. We interpret the results as reflecting a stimulus recognition automaticity deficit in dyslexia, rather than a sustained attention deficit. Furthermore, results suggest that response inhibition is an important component of performance on the standard SART when stimuli are recognised automatically.
Resumo:
Background Emotional-processing inhibition has been suggested as a mechanism underlying some of the clinical features of depersonalization and/or derealization. In this study, we tested the prediction that autonomic response to emotional stimuli would be reduced in patients with depersonalization disorder. Methods The skin conductance responses of 15 patients with chronic depersonalization disorder according to DSM-IV, 15 controls, and 11 individuals with anxiety disorders according to DSM-IV, were recorded in response to nonspecific elicitors (an unexpected clap and taking a sigh) and in response to 15 randomized pictures with different emotional valences: 5 unpleasant, 5 pleasant, and 5 neutral. Results The skin conductance response to unpleasant pictures was significantly reduced in patients with depersonalization disorder (magnitude of 0.017 µsiemens in controls and 0.103 µsiemens in patients with anxiety disorders; P = .01). Also, the latency of response to these stimuli was significantly prolonged in the group with depersonalization disorder (3.01 seconds compared with 2.5 and 2.1 seconds in the control and anxiety groups, respectively; P = .02). In contrast, latency to nonspecific stimuli (clap and sigh) was significantly shorter in the depersonalization and anxiety groups (1.6 seconds) than in controls (2.3 seconds) (P = .03). Conclusions In depersonalization disorder, autonomic response to unpleasant stimuli is reduced. The fact that patients with depersonalization disorder respond earlier to a startling noise suggests that they are in a heightened state of alertness and that the reduced response to unpleasant stimuli is caused by a selective inhibitory mechanism on emotional processing.
Resumo:
Neuroimaging studies in bipolar disorder report gray matter volume (GMV) abnormalities in neural regions implicated in emotion regulation. This includes a reduction in ventral/orbital medial prefrontal cortex (OMPFC) GMV and, inconsistently, increases in amygdala GMV. We aimed to examine OMPFC and amygdala GMV in bipolar disorder type 1 patients (BPI) versus healthy control participants (HC), and the potential confounding effects of gender, clinical and illness history variables and psychotropic medication upon any group differences that were demonstrated in OMPFC and amygdala GMV. Images were acquired from 27 BPI (17 euthymic, 10 depressed) and 28 age- and gender-matched HC in a 3T Siemens scanner. Data were analyzed with SPM5 using voxel-based morphometry (VBM) to assess main effects of diagnostic group and gender upon whole brain (WB) GMV. Post-hoc analyses were subsequently performed using SPSS to examine the extent to which clinical and illness history variables and psychotropic medication contributed to GMV abnormalities in BPI in a priori and non-a priori regions has demonstrated by the above VBM analyses. BPI showed reduced GMV in bilateral posteromedial rectal gyrus (PMRG), but no abnormalities in amygdala GMV. BPI also showed reduced GMV in two non-a priori regions: left parahippocampal gyrus and left putamen. For left PMRG GMV, there was a significant group by gender by trait anxiety interaction. GMV was significantly reduced in male low-trait anxiety BPI versus male low-trait anxiety HC, and in high- versus low-trait anxiety male BPI. Our results show that in BPI there were significant effects of gender and trait-anxiety, with male BPI and those high in trait-anxiety showing reduced left PMRG GMV. PMRG is part of medial prefrontal network implicated in visceromotor and emotion regulation.
Resumo:
Context - Diffusion tensor imaging (DTI) studies in adults with bipolar disorder (BD) indicate altered white matter (WM) in the orbitomedial prefrontal cortex (OMPFC), potentially underlying abnormal prefrontal corticolimbic connectivity and mood dysregulation in BD. Objective - To use tract-based spatial statistics (TBSS) to examine WM skeleton (ie, the most compact whole-brain WM) in subjects with BD vs healthy control subjects. Design - Cross-sectional, case-control, whole-brain DTI using TBSS. Setting - University research institute. Participants - Fifty-six individuals, 31 having a DSM-IV diagnosis of BD type I (mean age, 35.9 years [age range, 24-52 years]) and 25 controls (mean age, 29.5 years [age range, 19-52 years]). Main Outcome Measures - Fractional anisotropy (FA) longitudinal and radial diffusivities in subjects with BD vs controls (covarying for age) and their relationships with clinical and demographic variables. Results - Subjects with BD vs controls had significantly greater FA (t > 3.0, P = .05 corrected) in the left uncinate fasciculus (reduced radial diffusivity distally and increased longitudinal diffusivity centrally), left optic radiation (increased longitudinal diffusivity), and right anterothalamic radiation (no significant diffusivity change). Subjects with BD vs controls had significantly reduced FA (t > 3.0, P = .05 corrected) in the right uncinate fasciculus (greater radial diffusivity). Among subjects with BD, significant negative correlations (P < .01) were found between age and FA in bilateral uncinate fasciculi and in the right anterothalamic radiation, as well as between medication load and FA in the left optic radiation. Decreased FA (P < .01) was observed in the left optic radiation and in the right anterothalamic radiation among subjects with BD taking vs those not taking mood stabilizers, as well as in the left optic radiation among depressed vs remitted subjects with BD. Subjects having BD with vs without lifetime alcohol or other drug abuse had significantly decreased FA in the left uncinate fasciculus. Conclusions - To our knowledge, this is the first study to use TBSS to examine WM in subjects with BD. Subjects with BD vs controls showed greater WM FA in the left OMPFC that diminished with age and with alcohol or other drug abuse, as well as reduced WM FA in the right OMPFC. Mood stabilizers and depressed episode reduced WM FA in left-sided sensory visual processing regions among subjects with BD. Abnormal right vs left asymmetry in FA in OMPFC WM among subjects with BD, likely reflecting increased proportions of left-sided longitudinally aligned and right-sided obliquely aligned myelinated fibers, may represent a biologic mechanism for mood dysregulation in BD.
Resumo:
Bipolar disorder (BP) is among the top ten most disabling illnesses worldwide. This review includes findings from recent studies employing functional neuroimaging to examine functional abnormalities in neural systems underlying core domains of the psychopathology in BP: emotion processing, emotion regulation and executive control, and common comorbid features of BP, that are relevant to the wide spectrum of BP rather than focused on the more traditional BPI subtype, and that may facilitate future identification of diagnostically-relevant biomarkers of the disorder. In addition, an emerging number of studies are reviewed that demonstrate the use of neuroimaging to elucidate biomarkers whose identification may help to (1) identify at-risk individuals who will subsequently develop the illness to facilitate early intervention, (2) identify targets for treatment and markers of treatment response. The use of newer neuroimaging techniques and potential confounds of psychotropic medication upon neuroimaging findings in BP are also examined. These approaches will help to improve diagnosis and the mental well-being of all individuals with BP.
Resumo:
Objective - To identify neurocognitive measures that could be used as objective markers of bipolar disorder. Methods - We examined executive function, sustained attention and short-term memory as neurocognitive domains in 18 participants with bipolar disorder in euthymic state (Beuth), 14 in depressed state (Bdep), 20 with unipolar depression (Udep) and 28 healthy control participants (HC). We conducted four-group comparisons followed by relevant post hoc analyses. Results - Udep and Bdep, but not Beuth showed impaired executive function (p = 0.045 and p = 0.046, respectively). Both Bdep and Beuth, but not Udep, showed impaired sustained attention (p = 0.001 and p = 0.045, respectively). The four groups did not differ significantly on short-term memory. Impaired sustained attention and executive dysfunction were not associated with depression severity, duration of illness and age of illness onset. Only a small number of abnormal neurocognitive measures were associated with medication in Bdep and Beuth. Conclusion - Impaired sustained attention appears specific to bipolar disorder and present in both Beuth and Bdep; it may represent an objective marker of bipolar disorder. Executive dysfunction by contrast, appears to be present in Udep and Bdep and likely represents a marker of depression.
Resumo:
Patients with Bipolar Disorder (BD) perform poorly on tasks of selective attention and inhibitory control. Although similar behavioural deficits have been noted in their relatives, it is yet unclear whether they reflect dysfunction in the same neural circuits. We used functional magnetic resonance imaging and the Stroop Colour Word Task to compare task related neural activity between 39 euthymic BD patients, 39 of their first-degree relatives (25 with no Axis I disorders and 14 with Major Depressive Disorder) and 48 healthy controls. Compared to controls, all individuals with familial predisposition to BD, irrespective of diagnosis, showed similar reductions in neural responsiveness in regions involved in selective attention within the posterior and inferior parietal lobules. In contrast, hypoactivation within fronto-striatal regions, implicated in inhibitory control, was observed only in BD patients and MDD relatives. Although striatal deficits were comparable between BD patients and their MDD relatives, right ventrolateral prefrontal dysfunction was uniquely associated with BD. Our findings suggest that while reduced parietal engagement relates to genetic risk, fronto-striatal dysfunction reflects processes underpinning disease expression for mood disorders. © 2011 Elsevier Inc.
Resumo:
Objectives. Emotional dysregulation in bipolar disorder is thought to arise from dysfunction within prefrontal cortical regions involved in cognitive control coupled with increased or aberrant activation within regions engaged in emotional processing. The aim of this study was to determine the common and distinct patterns of functional brain abnormalities during reward and working memory processing in patients with bipolar disorder. Methods. Participants were 36 euthymic bipolar disorder patients and 37 healthy comparison subjects matched for age, sex and IQ. Functional magnetic resonance imaging (fMRI) was conducted during the Iowa Gambling Task (IGT) and the n-back working memory task. Results. During both tasks, patients with bipolar disorder demonstrated a pattern of inefficient engagement within the ventral frontopolar prefrontal cortex with evidence of segregation along the medial-lateral dimension for reward and working memory processing, respectively. Moreover, patients also showed greater activation in the anterior cingulate cortex during the Iowa Gambling Task and in the insula during the n-back task. Conclusions. Our data implicate ventral frontopolar dysfunction as a core abnormality underpinning bipolar disorder and confirm that overactivation in regions involved in emotional arousal is present even in tasks that do not typically engage emotional systems. © 2012 Informa Healthcare.
Resumo:
Background - Not only is compulsive checking the most common symptom in Obsessive Compulsive Disorder (OCD) with an estimated prevalence of 50–80% in patients, but approximately ~15% of the general population reveal subclinical checking tendencies that impact negatively on their performance in daily activities. Therefore, it is critical to understand how checking affects attention and memory in clinical as well as subclinical checkers. Eye fixations are commonly used as indicators for the distribution of attention but research in OCD has revealed mixed results at best. Methodology/Principal Finding - Here we report atypical eye movement patterns in subclinical checkers during an ecologically valid working memory (WM) manipulation. Our key manipulation was to present an intermediate probe during the delay period of the memory task, explicitly asking for the location of a letter, which, however, had not been part of the encoding set (i.e., misleading participants). Using eye movement measures we now provide evidence that high checkers’ inhibitory impairments for misleading information results in them checking the contents of WM in an atypical manner. Checkers fixate more often and for longer when misleading information is presented than non-checkers. Specifically, checkers spend more time checking stimulus locations as well as locations that had actually been empty during encoding. Conclusions/Significance - We conclude that these atypical eye movement patterns directly reflect internal checking of memory contents and we discuss the implications of our findings for the interpretation of behavioural and neuropsychological data. In addition our results highlight the importance of ecologically valid methodology for revealing the impact of detrimental attention and memory checking on eye movement patterns.
Resumo:
Impaired postural control has been associated with poor reading skills, as well as with lower performance on measures of attention and motor control variables that frequently co-occur with reading difficulties. Measures of balance and motor control have been incorporated into several screening batteries for developmental dyslexia, but it is unclear whether the relationship between such skills and reading manifests as a behavioural continuum across the range of abilities or is restricted to groups of individuals with specific disorder phenotypes. Here were obtained measures of postural control alongside measures of reading, attention and general cognitive skills in a large sample of young adults (n = 100). Postural control was assessed using centre of pressure (CoP) measurements, obtained over 5 different task conditions. Our results indicate an absence of strong statistical relationships between balance measures with either reading, cognitive or attention measures across the sample as a whole. © 2014 Loras et al.
Resumo:
OBJECTIVE: The objective of this study was to examine medical illness and anxiety, depressive, and somatic symptoms in older medical patients with generalized anxiety disorder (GAD). METHOD: A case-control study was designed and conducted in the University of California, San Diego (UCSD) Geriatrics Clinics. A total of fifty-four older medical patients with GAD and 54 matched controls participated. MEASUREMENTS: The measurements used for this study include: Brief Symptom Inventory-18, Mini International Neuropsychiatric Interview, and the Anxiety Disorders Interview Schedule. RESULTS: Older medical patients with GAD reported higher levels of somatic symptoms, anxiety, and depression than other older adults, as well as higher rates of diabetes and gastrointestinal conditions. In a multivariate model that included somatic symptoms, medical conditions, and depressive and anxiety symptoms, anxiety symptoms were the only significant predictors of GAD. CONCLUSION: These results suggest first, that older medical patients with GAD do not primarily express distress as somatic symptoms; second, that anxiety symptoms in geriatric patients should not be discounted as a byproduct of medical illness or depression; and third, that older adults with diabetes and gastrointestinal conditions may benefit from screening for anxiety.
Resumo:
Diabetes mellitus (DM) is a metabolic disorder which is characterised by hyperglycaemia resulting from defects in insulin secretion, insulin action or both. The long-term specific effects of DM include the development of retinopathy, nephropathy and neuropathy. Cardiac disease, peripheral arterial and cerebrovascular disease are also known to be linked with DM. Type 1 diabetes mellitus (T1DM) accounts for approximately 10% of all individuals with DM, and insulin therapy is the only available treatment. Type 2 diabetes mellitus (T2DM) accounts for 90% of all individuals with DM. Diet, exercise, oral hypoglycaemic agents and occasionally exogenous insulin are used to manage T2DM. The diagnosis of DM is made where the glycated haemoglobin (HbA1c) percentage is greater than 6.5%. Pattern-reversal visual evoked potential (PVEP) testing is an objective means of evaluating impulse conduction along the central nervous pathways. Increased peak time of the visual P100 waveform is an expression of structural damage at the level of myelinated optic nerve fibres. This was an observational cross sectional study. The participants were grouped into two phases. Phase 1, the control group, consisted of 30 healthy non-diabetic participants. Phase 2 comprised of 104 diabetic participants of whom 52 had an HbA1c greater than 10% (poorly controlled DM) and 52 whose HbA1c was 10% and less (moderately controlled DM). The aim of this study was to firstly observe the possible association between glycated haemoglobin levels and P100 peak time of pattern-reversal visual evoked potentials (PVEPs) in DM. Secondly, to assess whether the central nervous system (CNS) and in particular visual function is affected by type and/or duration of DM. The cut-off values to define P100 peak time delay was calculated as the mean P100 peak time plus 2.5 X standard deviations as measured for the non-diabetic control group, and were 110.64 ms for the right eye. The proportion of delayed P100 peak time amounted to 38.5% for both diabetic groups, thus the poorly controlled group (HbA1c > 10%) did not pose an increased risk for delayed P100 peak time, relative to the moderately controlled group (HbA1c ≤ 10%). The P100 PVEP results for this study, do however, reflect significant delay (p < 0.001) of the DM group as compared to the non-diabetic group; thus, subclincal neuropathy of the CNS occurs in 38.5% of cases. The duration of DM and type of DM had no influence on the P100 peak time measurements.
Resumo:
Life's perfect partnership starts with the placenta. If we get this right, we have the best chance of healthy life. In preeclampsia, we have a failing placenta. Preeclampsia kills one pregnant woman every minute and the life expectancy of those who survive is greatly reduced. Preeclampsia is treated roughly the same way it was when Thomas Edison was making the first silent movie. Globally, millions of women risk death to give birth each year and almost 300,000 lose their lives in this process. Over half a million babies around the world die each year as a consequence of preeclampsia. Despite decades of research, we lack pharmacological agents to treat it. Maternal endothelial dysfunction is a central phenomenon responsible for the clinical signs of preeclampsia. In the late nineties, we discovered that vascular endothelial growth factor (VEGF) stimulated nitric oxide release. This led us to suggest that preeclampsia arises due to the loss of VEGF activity, possibly due to a rise in soluble Flt-1 (sFlt-1), the natural antagonist of VEGF. Researchers have shown that high sFlt-1 elicits preeclampsia-like signs in pregnant rats and sFlt-1 increases before the clinical signs of preeclampsia in pregnant women. We demonstrated that removing or reducing this culprit protein from preeclamptic placenta restored the angiogenic balance. Heme oxygenase-1 (HO-1 or Hmox1) that generates carbon monoxide (CO), biliverdin (rapidly converted to bilirubin) and iron is cytoprotective. We showed that the Hmox1/CO pathway prevents human placental injury caused by pro-inflammatory cytokines and suppresses sFlt-1 and soluble endoglin release, factors responsible for preeclampsia phenotypes. The other key enzyme we identified is the hydrogen sulfide generating cystathionine-gamma-lyase (CSE or Cth). These are the only two enzyme systems shown to suppress sFlt-1 and to act as protective pathways against preeclampsia phenotypes in animal models. We also showed that when hydrogen sulfide restores placental vasculature, it also improves lagging fetal growth. These molecules act as the inhibitor systems in pregnancy and when they fail, this triggers preeclampsia. Discovering that statins induce these enzymes led us to an RCT to develop a low-cost therapy (StAmP Trial) to prevent or treat preeclampsia. If you think of pregnancy as a car then preeclampsia is an accelerator–brake defect disorder. Inflammation, oxidative stress and an imbalance in the angiogenic milieu fuel the ‘accelerator’. It is the failure in the braking systems (the endogenous protective pathway) that results in the ‘accelerator’ going out of control until the system crashes, manifesting itself as preeclampsia.
Resumo:
Background: Increased impulsivity and aberrant response inhibition have been observed in bipolar disorder (BD). This study examined the functional abnormalities and underlying neural processes during response inhibition in BD, and its relationship to impulsivity. Methods: We assessed impulsivity using the Barratt Impulsiveness Scale (BIS) and, using functional magnetic resonance imaging (fMRI), measured neural activity in response to an Affective Go-NoGo Task, consisting of emotional facial stimuli (fear, happy, anger faces) and non-emotional control stimuli (neutral female and male faces) in euthymic BD (n=23) and healthy individuals (HI; n=25). Results: BD patients were significantly more impulsive, yet did not differ from HI on accuracy or reaction time on the emotional go/no-go task. Comparing neural patterns of activation when processing emotional Go versus emotional NoGo trials yielded increased activation in BD within temporal and cingulate cortices and within prefrontal-cortical regions in HI. Furthermore, higher BIS scores for BD were associated with slower reaction times, and indicative of compensatory cognitive strategies to counter increased impulsivity. Conclusions: These findings illustrate cognition-emotion interference in BD and the observed differences in neural activation indicate potentially altered emotion modulation. Increased activation in brain regions previously shown in emotion regulation and response inhibition tasks could represent a disease-specific marker for BD