6 resultados para immunology, virology, immune evasion, cytomegalovirus

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rapid elimination of cells undergoing programmed cell death (apoptosis) is vital to maintain tissue homeostasis. The phagocytic removal of apoptotic cells (AC) is mediated by innate immune molecules, professional phagocytes and amateur phagocytes that recognise "eat me" signals on the surface of the AC. CD14, a pattern recognition receptor expressed on macrophages, is widely known for its ability to recognise the pathogen-associated molecular pattern lipopolysaccharide (LPS) and promote inflammation. CD14 also mediates the binding and removal of AC, a process that is considered to be anti-inflammatory therefore suggesting CD14 is capable of producing two distinct ligand-dependent responses. Our work seeks to define the molecular mechanisms underlying the involvement of CD14 in the non-inflammatory clearance of AC. Here we describe three different differentiation strategies used to generate macrophages from the monocytic cell line THP-1. Whilst CD14 expression was increased in each macrophage model we demonstrate significant differences in the various macrophage models' abilities to respond to LPS and clear AC. We show that CD14 expression correlates with CD14-dependent AC clearance and anti-inflammatory responses to AC. However LPS responsiveness correlates, as expected, with TLR4 but not CD14 expression. These observations suggest CD14-dependent AC clearance is not dependent on TLR4. Taken together our data support the notion that CD14 ligand-dependent responses to LPS and AC are derived from changes at the macrophage surface. The nature and composition of the CD14-co-receptor complex for LPS and AC binding and consequent responses is the subject of further study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

T cell activation is the final step in a complex pathway through which pathogen-derived peptide fragments can elicit an immune response. For it to occur, peptides must form stable complexes with Major Histocompatibility Complex (MHC) molecules and be presented on the cell surface. Computational predictors of MHC binding are often used within in silico vaccine design pathways. We have previously shown that, paradoxically, most bacterial proteins known experimentally to elicit an immune response in disease models are depleted in peptides predicted to bind to human MHC alleles. The results presented here, derived using software proven through benchmarking to be the most accurate currently available, show that vaccine antigens contain fewer predicted MHC-binding peptides than control bacterial proteins from almost all subcellular locations with the exception of cell wall and some cytoplasmic proteins. This effect is too large to be explained from the undoubted lack of precision of the software or from the amino acid composition of the antigens. Instead, we propose that pathogens have evolved under the influence of the host immune system so that surface proteins are depleted in potential MHC-binding peptides, and suggest that identification of a protein likely to contain a single immuno-dominant epitope is likely to be a productive strategy for vaccine design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

T-cell activation requires interaction of T-cell receptors (TCR) with peptide epitopes bound by major histocompatibility complex (MHC) proteins. This interaction occurs at a special cell-cell junction known as the immune or immunological synapse. Fluorescence microscopy has shown that the interplay among one agonist peptide-MHC (pMHC), one TCR and one CD4 provides the minimum complexity needed to trigger transient calcium signalling. We describe a computational approach to the study of the immune synapse. Using molecular dynamics simulation, we report here on a study of the smallest viable model, a TCR-pMHC-CD4 complex in a membrane environment. The computed structural and thermodynamic properties are in fair agreement with experiment. A number of biomolecules participate in the formation of the immunological synapse. Multi-scale molecular dynamics simulations may be the best opportunity we have to reach a full understanding of this remarkable supra-macromolecular event at a cell-cell junction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Macrophages play important roles in the clearance of dying and dead cells. Typically, and perhaps simplistically, they are viewed as the professional phagocytes of apoptotic cells. Clearance by macrophages of cells undergoing apoptosis is a non-phlogistic phenomenon which is often associated with actively anti-inflammatory phagocyte responses. By contrast, macrophage responses to necrotic cells, including secondarily necrotic cells derived from uncleared apoptotic cells, are perceived as proinflammatory. Indeed, persistence of apoptotic cells as a result of defective apoptotic-cell clearance has been found to be associated with the pathogenesis of autoimmune disease. Here we review the mechanisms by which macrophages interact with, and respond to, apoptotic cells. We suggest that macrophages are especially important in clearing cells at sites of histologically visible, high-rate apoptosis and that, otherwise, apoptotic cells are removed largely by non-macrophage neighbours. We challenge the view that necrotic cells, including persistent apoptotic cells are, of necessity, proinflammatory and immunostimulatory and suggest that, under appropriate circumstances, persistent apoptotic cells can provide a prolonged anti-inflammatory stimulus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ageing process results from a complex interplay between genes and the environment that can precipitate an uncontrolled inflammation. Epigenetic changes are believed to provide a link between the environment and nutrition to gene expression by altering the activity of some histone-modifying protein. Epigenetic modifications of DNA and histone proteins have been proposed as important contributory mechanisms to the retention of metabolic memory over time. A thorough understanding of the posttranscriptional and epigenetic factors involved in both normal ageing and age-related disease may inform new strategies and approaches to diagnose, treat, or suppress many aspects of age-dependent frailty.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The immune system is perhaps the largest yet most diffuse and distributed somatic system in vertebrates. It plays vital roles in fighting infection and in the homeostatic control of chronic disease. As such, the immune system in both pathological and healthy states is a prime target for therapeutic interventions by drugs-both small-molecule and biologic. Comprising both the innate and adaptive immune systems, human immunity is awash with potential unexploited molecular targets. Key examples include the pattern recognition receptors of the innate immune system and the major histocompatibility complex of the adaptive immune system. Moreover, the immune system is also the source of many current and, hopefully, future drugs, of which the prime example is the monoclonal antibody, the most exciting and profitable type of present-day drug moiety. This brief review explores the identity and synergies of the hierarchy of drug targets represented by the human immune system, with particular emphasis on the emerging paradigm of systems pharmacology. © the authors, publisher and licensee Libertas Academica Limited.