17 resultados para hydro mechanical system
em Aston University Research Archive
Resumo:
This project has been undertaken for Hamworthy Hydraulics Limited. Its objective was to design and develop a controller package for a variable displacement, hydraulic pump for use mainly on mobile earth moving machinery. A survey was undertaken of control options used in practice and from this a design specification was formulated, the successful implementation of which would give Hamworthy an advantage over its competitors. Two different modes for the controller were envisaged. One consisted of using conventional hydro-mechanics and the other was based upon a microprocessor. To meet short term customer prototype requirements the first section of work was the realisation of the hydro-mechanical system. Mathematical models were made to evaluate controller stability and hence aid their design. The final package met the requirements of the specification and a single version could operate all sizes of variable displacement pumps in the Hamworthy range. The choice of controller options and combinations totalled twenty-four. The hydro-mechanical controller was complex and it was realised that a micro-processor system would allow all options to be implemented with just one design of hardware, thus greatly simplifying production. The final section of this project was to determine whether such a design was feasible. This entailed finding cheap, reliable transducers, using mathematical models to predict electro-hydraulic interface stability, testing such interfaces and finally incorporating a micro-processor in an interactive control loop. The study revealed that such a system was technically possible but it would cost 60% more than its hydro-mechanical counterpart. It was therefore concluded that, in the short term, for the markets considered, the hydro-mechanical design was the better solution. Regarding the micro-processor system the final conclusion was that, because the relative costs of the two systems are decreasing, the electro-hydraulic controller will gradually become more attractive and therefore Hamworthy should continue with its development.
Resumo:
Through the application of novel signal processing techniques we are able to measure physical measurands with both high accuracy and low noise susceptibility. The first interrogation scheme is based upon a CCD spectrometer. We compare different algorithms for resolving the Bragg wavelength from a low resolution discrete representation of the reflected spectrum, and present optimal processing methods for providing a high integrity measurement from the reflection image. Our second sensing scheme uses a novel network of sensors to measure the distributive strain response of a mechanical system. Using neural network processing methods we demonstrate the measurement capabilities of a scalable low-cost fibre Bragg grating sensor network. This network has been shown to be comparable with the performance of existing fibre Bragg grating sensing techniques, at a greatly reduced implementation cost.
Resumo:
The exchange of proteins and lipids between the trans-Golgi network (TGN) and the endosomal system requires multiple cellular machines, whose activities are coordinated in space and time to generate pleomorphic, tubulo-vesicular carriers that deliver their content to their target compartments. These machines and their associated protein networks are recruited and/or activated on specific membrane domains where they select proteins and lipids into carriers, contribute to deform/elongate and partition membrane domains using the mechanical forces generated by actin polymerization or movement along microtubules. The coordinated action of these protein networks contributes to regulate the dynamic state of multiple receptors recycling between the cell surface, endosomes and the TGN, to maintain cell homeostasis as exemplified by the biogenesis of lysosomes and related organelles, and to establish/maintain cell polarity. The dynamic assembly and disassembly of these protein networks mediating the exchange of membrane domains between the TGN and endosomes regulates cell-cell signalling and thus the development of multi-cellular organisms. Somatic mutations in single network components lead to changes in transport dynamics that may contribute to pathological modifications underlying several human diseases such as mental retardation.
Resumo:
This thesis is concerned with the development of hydrogels that adhere to skin and can be used for topical or trans dermal release of active compounds for therapeutic or cosmetic use. The suitability of a range of monomers and initiator systems for the production of skin adhesive hydro gels by photopolymerisation was explored and an approximate order of monomer reactivity in aqueous solution was determined. Most notably, the increased reactivity of N-vinyl pyrrolidone within an aqueous system, as compared to its low rate of polymerisation in organic solvents, was observed. The efficacy of a series of photoinitiator systems for the preparation of sheet hydrogels was investigated. Supplementary redox and thermal initiators were also examined. The most successful initiator system was found to be Irgacure 184, which is commonly used in commercial moving web production systems that employ photopolymerisation. The influence of ionic and non-ionic monomers, crosslinking systems, water and glycerol on the adhesive and dynamic mechanical behaviour of partially hydrated hydrogel systems was examined. The aim was to manipulate hydrogel behaviour to modify topical and transdermal delivery capability and investigated the possibility of using monomer combinations that would influence the release characteristics of gels by modifying their hydrophobic and ionic nature. The copolymerisation of neutral monomers (N-vinyl pyrrolidone, N,N-dimethyl acrylamide and N-acryloyl morpholine) with ionic monomers (2-acrylamido-2-methylpropane sulphonic acid; sodium salt, and the potassium salt of 3-sulphopropyl acrylate) formed the basis of the study. Release from fully and partially hydrated hydrogels was studied, using model compounds and a non-steroidal anti-inflammatory drug, Ibuprofen. Release followed a common 3-stage kinetic profile that includes an initial burst phase, a secondary phase of approximate first order release and a final stage of infinitesimally slow release such that the compound is effectively retained within the hydrogel. Use of partition coefficients, the pKa of the active and a knowledge of charge-based and polar interactions of polymer and drug were complementary in interpreting experimental results. In summary, drug ionisation, hydrogel composition and external release medium characteristics interact to influence release behaviour. The information generated provides the basis for the optimal design of hydrogels for specific dermal release applications and some understanding of the limitations of these systems for controlled release applications.
Resumo:
Paper-based phenolic laminates are used extensively in the electrical industry. Many small components are fabricated from these materials by the process known as punching. Recently an investigation was carried out to study the effect of processing variables on the punching properties. It was concluded that further work would be justified and that this should include a critical examination of the resin properties in a more controlled and systematic manner. In this investigation an attempt has been made to assess certain features of the resin structure in terms of thermomechanical properties. The number of crosslinks in the system was controlled using resins based on phenol and para-cresol formulations. Intramolecular hydrogen bonding effects were examined using substituted resins and a synthetically derived phenol based on 1,3-di-(o-hydroxyphenyl) propane.. A resin system was developed using the Friedel Crafts reaction to examine inter-molecular hydrogen bonding at the resin-paper interface. The punching properties of certain selected resins were assessed on a qualitative basis. In addition flexural and dynamic mechanical properties were determined in a general study of the structure-property relationships of these materials. It has been shown that certain features of the resin structure significantly influenced mechanical properties. :F'urther, it was noted that there is a close relationship between punching properties, mechanical damping and flexural strain. This work includes a critical examination of the curing mechanism and views are postulated in an attempt to extend knowledge in this area of the work. Finally, it is argued that future work should be based on a synthetic approach and that dynamic mechanical testing would provide a powerful tool In developing a deeper understanding of the resin fine structure.
Resumo:
This study is primarily concerned with the problem of break-squeal in disc brakes, using moulded organic disc pads. Moulded organic friction materials are complex composites and due to this complexity it was thought that they are unlikely to be of uniform composition. Variation in composition would under certain conditions of the braking system, cause slight changes in its vibrational characteristics thus causing resonance in the high audio-frequency range. Dynamic mechanical propertes appear the most likely parameters to be related to a given composition's tendency to promote squeal. Since it was necessary to test under service conditions a review was made of all the available commercial test instruments but as none were suitable it was necessary to design and develop a new instrument. The final instrument design, based on longitudinal resonance, enabled modulus and damping to be determined over a wide range of temperatures and frequencies. This apparatus has commercial value since it is not restricted to friction material testing. Both used and unused pads were tested and although the cause of brake squeal was not definitely established, the results enabled formulation of a tentative theory of the possible conditions for brake squeal. The presence of a temperature of minimum damping was indicated which may be of use to braking design engineers. Some auxilIary testing was also performed to establish the effect of water, oil and brake fluid and also to determine the effect of the various components of friction materials.
Resumo:
Investigation of the different approaches used by Expert Systems researchers to solve problems in the domain of Mechanical Design and Expert Systems was carried out. The techniques used for conventional formal logic programming were compared with those used when applying Expert Systems concepts. A literature survey of design processes was also conducted with a view to adopting a suitable model of the design process. A model, comprising a variation on two established ones, was developed and applied to a problem within what are described as class 3 design tasks. The research explored the application of these concepts to Mechanical Engineering Design problems and their implementation on a microcomputer using an Expert System building tool. It was necessary to explore the use of Expert Systems in this manner so as to bridge the gap between their use as a control structure and for detailed analytical design. The former application is well researched into and this thesis discusses the latter. Some Expert System building tools available to the author at the beginning of his work were evaluated specifically for their suitability for Mechanical Engineering design problems. Microsynics was found to be the most suitable on which to implement a design problem because of its simple but powerful Semantic Net Knowledge Representation structure and the ability to use other types of representation schemes. Two major implementations were carried out. The first involved a design program for a Helical compression spring and the second a gearpair system design. Two concepts were proposed in the thesis for the modelling and implementation of design systems involving many equations. The method proposed enables equation manipulation and analysis using a combination of frames, semantic nets and production rules. The use of semantic nets for purposes other than for psychology and natural language interpretation, is quite new and represents one of the major contributions to knowledge by the author. The development of a purpose built shell program for this type of design problems was recommended as an extension of the research. Microsynics may usefully be used as a platform for this development.
Resumo:
Mechanical seals are used extensively to seal machinery such as pumps, mixers and agitators in the oil, petrochemical and chemical industries. The performance of such machinery is critically dependent on these devices. Seal failures may result in the escape of dangerous chemicals, possibly causing injury or loss of life. Seal performance is limited by the choice of face materials available. These range from cast iron and stellited stainless steel to cemented and silicon carbides. The main factors that affect seal performance are the wear and corrosion of seal faces. This research investigated the feasibility of applying surface coating/treatments to seal materials, in order to provide improved seal performance. Various surface coating/treatment methods were considered; these included electroless nickel plating, ion plating, plasma nitriding, thermal spraying and high temperature diffusion processes. The best wear resistance, as evaluated by the Pin-on-Disc wear test method, was conferred by the sprayed tungsten carbide/nickel/tungsten-chromium carbide deposit, produced by the high energy plasma spraying (Jet-Kote) process. In general, no correlation was found between hardness and wear resistance or surface finish and friction. This is due primarily to the complexity of the wear and frictional oxidation, plastic deformation, ploughing, fracture and delamination. Corrosion resistance was evaluated by Tafel extrapolation, linear polarisation and anodic potentiodynamic polarisation techniques. The best corrosion performance was exhibited by an electroless nickel/titanium nitride duplex coating due to the passivity of the titanium nitride layer in the acidified salt solution. The surface coating/treatments were ranked using a systematic method, which also considered other properties such as adhesion, internal stress and resistance to thermal cracking. The sealing behaviour of surface coated/treated seals was investigated on an industrial seal testing rig. The best sealing performances were exhibited by the Jet-Kote and electroless nickel silicon carbide composite coated seals. The failure of the electroless nickel and electroless nickel/titanium nitride duplex coated seals was due to inadequate adhesion of the deposits to the substrate. Abrasion of the seal faces was the principal wear mechanism. For operation in an environment similar to the experimental system employed (acidified salt solution) the Jet-Kote deposit appears to be the best compromise.
Resumo:
Poly(e-caprolactone) (PCL) is biocompatible, non-immunogenic and non-toxic, and slowly degrades, allowing sufficient time for tissue regeneration. PCL has the potential for application in bone and cartilage repair as it may provide the essential structure required for bone regeneration, however, an ideal scaffold system is still undeveloped. PCL fibres were prepared using the gravity spinning technique, in which collagen was either incorporated into or coated onto the 'as-spun' fibres, in order to develop novel biodegradable polymer fibres which will effectively deliver collagen and support the attachment and proliferation of human osteoblast (HOB) cells for bone regeneration. The physical and mechanical characteristics and cell fibre interactions were analysed. The PCL fibres were found to be highly flexible and inclusion of collagen did not alter the mechanical properties of PCL fibres. Overall, HOB cells were shown to effectively adhere and proliferate on all fibre platforms tested, although proliferation rates were enhanced by surface coating PCL fibres with collagen compared to PCL fibres incorporating collagen and PCL-only fibres. These findings highlight the potential of using gravity spun PCL fibres as a delivery platform for extracellular matrix proteins, such as collagen, in order to enhance cell adherence and proliferation for tissue repair.
Resumo:
In this study the effect of structure and amount of polyglactin fibre incorporation into a brushite forming calcium phosphate cement system and the effect of mechanical compaction on the fibre modified system were investigated. In comparison the effect of resorbable polycaprolactone surface coating of cement specimens was investigated. The results showed that, apart from the mechanical properties of the reinforcing material, the structure of the incorporated fibres, regular or random, is crucial for the resulting flexural strength and modulus of elasticity. Fibre reinforcement could also be combined with mechanical compaction of the cement/fibre composite paste leading to a possible 7-fold increase in flexural strength or an almost 5-fold increase in modulus of elasticity. Reinforcement of the tensile surface of cement grafts may ultimately improve strength where required, especially in conjunction with bone fixation devices. © 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Hydrogels containing carbon nanotubes (CNTs) are expected to be promising conjugates because they might show a synergic combination of properties from both materials. Most of the hybrid materials containing CNTs only entrap them physically, and the covalent attachment has not been properly addressed yet. In this study, single-walled carbon nanotubes (SWNTs) were successfully incorporated into a poly(ethylene glycol) (PEG) hydrogel by covalent bonds to form a hybrid material. For this purpose, SWNTs were functionalized with poly(ethylene glycol) methacrylate (PEGMA) to obtain water-soluble pegylated SWNTs (SWNT–PEGMA). These functionalized SWNTs were covalently bonded through their PEG moieties to a PEG hydrogel. The hybrid network was obtained from the crosslinking reaction of poly(ethylene glycol) diacrylate prepolymer and the SWNT–PEGMA by dual photo-UV and thermal initiations. The mechanical and swelling properties of the new hybrid material were studied. In addition, the material and lixiviates were analyzed to elucidate any kind of SWNT release and to evaluate a possible in vitro cytotoxic effect. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.
Resumo:
The precipitation reactions occurring in a series of copper-based alloys selected from the system copper-chromium-zirconium have been studied by resistometric and metallographic techniques. A survey of the factors influencing the development of copper-based alloys for high strength, high conductivity applications is followed by a more general review of contemporary materials, and illustrates that the most promising alloys are those containing chromium and zirconium. The few systematic attempts to study alloys from this system have been collated, discussed, and used as a basis for the selection of four alloy compositions viz:- Cu - 0.4% Cr Cu - 0.24. Zr Cu - 0. 3% Cr - 0.1% Zr Cu - 0.2% Cr - 0.2% Zr A description of the experimental techniques used to study the precipitation behaviour of these materials is preceeded by a discussion of the currently accepted theories relating to precipitate nucleation and growth. The experimental results are presented and discussed for each of the alloys independently, and are then treated jointly to obtain an overall assessment of the way in which the precipitation kinetics, metallography and mechanical properties vary with alloy composition and heat treatment. The metastable solid solution of copper-chromium is found to decompose by the rejection of chromium particles which maintain a coherent interface and a Kurdjumov-Sachs type crystallographic orientation relationship with the copper matrix. The addition of 0.1% zirconium to the alloy retards the rate of transformation by a factor of ten and modifies the dispersion characteristics of the precipitate without markedly altering the morphology. Further additions of zirconium lead to the growth of stacking faults during ageing, which provide favourable nucleation sites for the chromium precipitate. The partial dislocations bounding such stacking faults are also found to provide mobile heterogeneous nucleation sources for the precipitation reactions occurring in copper-zirconium.
Resumo:
The recent development of using negative stiffness inclusions to achieve extreme overall stiffness and mechanical damping of composite materials reveals a new avenue for constructing high performance materials. One of the negative stiffness sources can be obtained from phase transforming materials in the vicinity of their phase transition, as suggested by the Landau theory. To understand the underlying mechanism from a microscopic viewpoint, we theoretically analyze a 2D, nested triangular lattice cell with pre-chosen elements containing negative stiffness to demonstrate anomalies in overall stiffness and damping. Combining with current knowledge from continuum models, based on the composite theory, such as the Voigt, Reuss, and Hashin-Shtrikman model, we further explore the stability of the system with Lyapunov's indirect stability theorem. The evolution of the microstructure in terms of the discrete system is discussed. A potential application of the results presented here is to develop special thin films with unusual in-plane mechanical properties. © 2006 Elsevier B.V. All rights reserved.
Resumo:
Progress in the development of actuating molecular devices based on responsive polymers is reviewed. The synthesis and characterization of "grafted from brushes and triblock copolymers is reported. The responsive nature of polyelectrolyte brushes, grown by surface initiated atomic transfer radical polymerization (ATRP), has been characterized by scanning force microscopy, neutron reflectometry, and single molecule force measurements. The molecular response is measured directly for the brushes in terms of both the brush height and composition and the force generated by a single molecule. Triblock copolymers, based on hydrophobic end blocks and polyacid midblock, have been used to produce polymer gels where the deformation of the molecules can be followed directly by small angle Xray scattering (SAXS), and a correlation between molecular shape change and macroscopic deformation has been established. A Landolt pHoscillator, based on bromate/sulfite/ferrocyanide, with a room temperature period of 20 min and a range of 3.1