5 resultados para hurdles
em Aston University Research Archive
Resumo:
Outcomes measures, which is the measurement of effectiveness of interventions and services has been propelled onto the health service agenda since the introduction of the internal market in the 1990s. It arose as a result of the escalating cost of inpatient care, the need to identify what interventions work and in what situations, and the desire for effective information by service users enabled by the consumerist agenda introduced by Working for Patients white paper. The research reported in this thesis is an assessment of the readiness of the forensic mental health service to measure outcomes of interventions. The research examines the type, prevalence and scope of use of outcomes measures, and further seeks a consensus of views of key stakeholders on the priority areas for future development. It discusses the theoretical basis for defining health and advocates the argument that the present focus on measuring effectiveness of care is misdirected without the input of users, particularly patients in their care, drawing together the views of the many stakeholders who have an interest in the provision of care in the service. The research further draws on the theory of structuration to demonstrate the degree to which a duality of action, which is necessary for the development, and use of outcomes measures is in place within the service. Consequently, it highlights some of the hurdles that need to be surmounted before effective measurement of health gain can be developed in the field of study. It concludes by advancing the view that outcomes research can enable practitioners to better understand the relationship between the illness of the patient and the efficacy of treatment. This understanding it is argued would contribute to improving dialogue between the health care practitioner and the patient, and further providing the information necessary for moving away from untested assumptions, which are numerous in the field about the superiority of one treatment approach over another.
Resumo:
Combined Heat and Power (CHP) is the simultaneous generation of usable heat and power in a single process. Despite its obvious advantages in terms of increased efficiency when compared to a single heat or power generation unit, there are a number of technical and economic reasons that have limited their selection. Biomass resources can be, and actually are used as fuel in CHP installations; however several hurdles have to be sorted beforehand, among the most important is the fact that biomass energy sources are not as energy intense as conventional CHP fuels. The ultimate outcome is a limited number of CHP units making use of biomass as fuel. Even fewer CHP units use bioliquids (e.g.: fast pyrolysis biomass liquids, biodiesel and vegetable oil). The Bioliquid-CHP project is carried out by a consortium of seven European and Russian complementary partners, funded by the EU and by the Federal Agency for Science and Innovation of the Russian Federation. The project aim is to develop microturbine and internal combustion engine adaptations in order to adjust these prime movers to bioliquids for CHP applications. This paper will show a summary of the current biomass CHP installations in the UK and the Netherlands, making reference to number of units, capacity, fuel used, the conversion technology involved and the preferred prime movers. The information will give an insight of the current market, with probable future trends and areas where growth could be expected. A similar paper describing the biomass CHP situation in Italy and Russia will be prepared in the near future.
Resumo:
The case for monitoring large-scale sea level variability is established in the context of the estimation of the extent of anthropogenic climate change. Satellite altimeters are identified as having the potential to monitor this change with high resolution and accuracy. Possible sources of systematic errors and instabilities in these instruments which would be hurdles to the most accurate monitoring of such ocean signals are examined. Techniques for employing tide gauges to combat such inaccuracies are proposed and developed. The tide gauge at Newhaven in Sussex is used in conjunction with the nearby satellite laser ranger and high-resolution ocean models to estimate the absolute bias of the TOPEX, Poseidon, ERS 1 and ERS 2 altimeters. The theory which underlies the augmentation of altimeter measurements with tide gauge data is developed. In order to apply this, the tide gauges of the World Ocean Circulation Experiment are assessed and their suitability for altimeter calibration is determined. A reliable subset of these gauges is derived. A method of intra-altimeter calibration is developed using these tide gauges to remove the effect of variability over long time scales. In this way the long-term instability in the TOPEX range measurement is inferred and the drift arising from the on-board ultra stable oscillator is thus detected. An extension to this work develops a method for inter-altimeter calibration, allowing the systematic differences between unconnected altimeters to be measured. This is applied to the TOPEX and ERS 1 altimeters.
Resumo:
Vaccines remain a key tool in the defence against major diseases. However, in the development of vaccines a trade off between safety and efficacy is required with newer vaccines, based on sub-unit proteins and peptides, displaying improved safety profiles yet suffering from low efficacy. Adjuvants can be employed to improve their potency, but currently there are only a limited number of adjuvant systems licensed for clinical use. Of the new adjuvants being investigated, particulate systems offer several advantages including: passive targeting to the antigen-presenting cells within the immune system, protection against adjuvant degradation, and ability for sustained antigen release. There has been a range of particulate vaccine delivery systems outlined in recent patents including polymer-based microspheres (which are generally more focused on the use of synthetic polymers, in particular the polyesters) and surfactant-based vesicles. Within these formulations, several patented systems are exploiting the use of cationic lipids which, despite their limitations in gene therapy, clearly offer strong potential as adjuvants. Within this review, the current range of particulate system technologies being investigated as potential adjuvants are discussed with regard to both their respective advantages and the potential hurdles which must be overcome for such systems to be converted into successful pharmaceutical products.
Resumo:
We know the many hurdles that face us when we look to deliver a drug, starting from the basic characteristics of the drug (its solubility, stability, absorption and biodistribution), to overcoming the physiological barriers faced in reaching the target site, and to maintaining the concentration within the therapeutic window. In addition we must also remember the patient needs in this – is it a child that needs a liquid dosage form? Is it someone having to take multiple doses in a day? Do we need a rapid onset of action in a convenient format? Will people find it convenient to take the drug in the format we are presenting to them – or are there alternative options? [...]