4 resultados para human gastrointestinal motility

em Aston University Research Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aims of this work have been to identify an enzymatic reaction system suitable to investigate and develop the high-speed centrifuge as a novel reaction system for performing such reactions. The production of galacto-oligosaccharides by the trans-galactosyl activity of the enzyme β-galactosidase on lactose monohydrate was identified as a model enzymatic system to elucidate the principles of this type of process. Galacto-oligosaccharides have attracted considerable commercial interest as food additives which have been shown to be beneficial to the health of the human gastrointestinal tract. The development of a single unit operation capable of controlling the biosynthesis of galacto-oligosaccharides whilst simultaneously separating the enzyme from the reaction products would reduce downstream processing costs. This thesis shows for the first time that by using a combination of (a) immobilised or insolubilised β-galactosidase , (b) a rate-zonal centrifugation technique, and (c) various applied centrifugal fields, that a high-speed centrifuge could be used to control the formation of galacto-oligosaccharides whilst removing the enzyme from the reaction products. By layering a suspension of insolubilised β-galactosidase on top of a lactose monohydrate density gradient and centrifuging, the applied centrifugal fields generated produced sedimentation of the enzyme particles through the substrate. The higher sedimentation rate of the enzyme compared to those of the reaction products allowed for separation to take place. Complete sedimentation, or pelleting of the enzyme permits the possible recovery and re-use. Insolubilisation of the enzyme allowed it to be sedimented through the substrate gradient using much lower applied centrifugal fields than that required to sediment free soluble enzyme and this allowed for less expensive centrifugation equipment to be used. Using free soluble and insolubilised β-galactosidase stirred-batch reactions were performed to investigate the kinetics of lactose monohydrate hydrolysis and galacto-oligosaccharide formation. Based on these results a preliminary mathematical model based on Michaelis-Menten kinetics was produced. It was found that the enzyme insolubilisation process using a chemical cross-linking agent did not affect the process of galacto-oligosaccharide formation. Centrifugation experiments were performed and it was found that by varying the applied centrifugal fields that the yield of galacto-oligosaccharides could be controlled. The higher the applied centrifugal fields the lower the yield of galacto-oligosaccharides. By increasing the applied centrifugal fields the 'contact time' between the sedimenting enzyme and the substrate was reduced, which produced lower yields. A novel technique involving pulsing the insolubilised enzyme through the substrate gradient was developed and this was found to produce higher yields of galacto-oligosaccharide compared to using a single enzyme loading equivalent to the total combined activity of the pulses. Comparison of the galacto-oligosaccharide yields between stirred-batch and centrifugation reactions showed that the applied centrifugal fields did not adversely affect the transgalactosyl activity of the insolubilised enzyme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rectum has a unique physiological role as a sensory organ and differs in its afferent innervation from other gut organs that do not normally mediate conscious sensation. We compared the central processing of human esophageal, duodenal, and rectal sensation using cortical evoked potentials (CEP) in 10 healthy volunteers (age range 21-34 yr). Esophageal and duodenal CEP had similar morphology in all subjects, whereas rectal CEP had two different but reproducible morphologies. The rectal CEP latency to the first component P1 (69 ms) was shorter than both duodenal (123 ms; P = 0.008) and esophageal CEP latencies (106 ms; P = 0.004). The duodenal CEP amplitude of the P1-N1 component (5.0 µV) was smaller than that of the corresponding esophageal component (5.7 µV; P = 0.04) but similar to that of the corresponding rectal component (6.5 µV; P = 0.25). This suggests that rectal sensation is either mediated by faster-conducting afferent pathways or that there is a difference in the orientation or volume of cortical neurons representing the different gut organs. In conclusion, the physiological and anatomic differences between gut organs are reflected in differences in the characteristics of their afferent pathways and cortical processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although visceral hypersensitivity is thought to be important in generating symptoms in functional gastrointestinal disorders, the neural mechanisms involved are poorly understood. We recently showed that central sensitization (hyperexcitability of spinal cord sensory neurones) may play an important role. In this study, we demonstrate that after a 30-min infusion of 0.15 M HCl acid into the healthy human distal esophagus, we see a reduction in the pain threshold to electrical stimulation of the non-acid-exposed proximal esophagus (9.6 ± 2.4 mA) and a concurrent reduction in the latency of the N1 and P2 components of the esophageal evoked potentials (EEP) from this region (10.4 ± 2.3 and 15.8 ± 5.3 ms, respectively). This reduced EEP latency indicates a central increase in afferent pathway velocity and therefore suggests that hyperexcitability within the central visceral pain pathway contributes to the hypersensitivity within the proximal, non-acid-exposed esophagus (secondary hyperalgesia/allodynia). These findings provide the first electrophysiological evidence that central sensitization contributes to human visceral hypersensitivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Noxious stimuli in the esophagus cause pain that is referred to the anterior chest wall because of convergence of visceral and somatic afferents within the spinal cord. We sought to characterize the neurophysiological responses of these convergent spinal pain pathways in humans by studying 12 healthy subjects over three visits (V1, V2, and V3). Esophageal pain thresholds (Eso-PT) were assessed by electrical stimulation and anterior chest wall pain thresholds (ACW-PT) by use of a contact heat thermode. Esophageal evoked potentials (EEP) were recorded from the vertex following 200 electrical stimuli, and anterior chest wall evoked potentials (ACWEP) were recorded following 40 heat pulses. The fear of pain questionnaire (FPQ) was administered on V1. Statistical data are shown as point estimates of difference +/- 95% confidence interval. Pain thresholds increased between V1 and V3 [Eso-PT: V1-V3 = -17.9 mA (-27.9, -7.9) P < 0.001; ACW-PT: V1-V3 = -3.38 degrees C (-5.33, -1.42) P = 0.001]. The morphology of cortical responses from both sites was consistent and equivalent [P1, N1, P2, N2 complex, where P1 and P2 are is the first and second positive (downward) components of the CEP waveform, respectively, and N1 and N2 are the first and second negative (upward) components, respectively], indicating activation of similar cortical networks. For EEP, N1 and P2 latencies decreased between V1 and V3 [N1: V1-V3 = 13.7 (1.8, 25.4) P = 0.02; P2: V1-V3 = 32.5 (11.7, 53.2) P = 0.003], whereas amplitudes did not differ. For ACWEP, P2 latency increased between V1 and V3 [-35.9 (-60, -11.8) P = 0.005] and amplitudes decreased [P1-N1: V1-V3 = 5.4 (2.4, 8.4) P = 0.01; P2-N2: 6.8 (3.4, 10.3) P < 0.001]. The mean P1 latency of EEP over three visits was 126.6 ms and that of ACWEP was 101.6 ms, reflecting afferent transmission via Adelta fibers. There was a significant negative correlation between FPQ scores and Eso-PT on V1 (r = -0.57, P = 0.05). These data provide the first neurophysiological evidence of convergent esophageal and somatic pain pathways in humans.