16 resultados para human bone

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim. To compare the incorporation, growth, and chondrogenic potential of bone marrow (BM) and adipose tissue (AT) mesenchymal stem cells (MSCs) in scaffolds used for cartilage repair. Methods. Human BM and AT MSCs were isolated, culture expanded, and characterised using standard protocols, then seeded into 2 different scaffolds, Chondro-Gide or Alpha Chondro Shield. Cell adhesion, incorporation, and viable cell growth were assessed microscopically and following calcein AM/ethidium homodimer (Live/Dead) staining. Cell-seeded scaffolds were treated with chondrogenic inducers for 28 days. Extracellular matrix deposition and soluble glycosaminoglycan (GAG) release into the culture medium was measured at day 28 by histology/immunohistochemistry and dimethylmethylene blue assay, respectively. Results. A greater number of viable MSCs from either source adhered and incorporated into Chondro-Gide than into Alpha Chondro Shield. In both cell scaffolds, this incorporation represented less than 2% of the cells that were seeded. There was a marked proliferation of BM MSCs, but not AT MSCs, in Chondro-Gide. MSCs from both sources underwent chondrogenic differentiation following induction. However, cartilaginous extracellular matrix deposition was most marked in Chondro- Gide seeded with BM MSCs. Soluble GAG secretion increased in chondrogenic versus control conditions. There was no marked difference in GAG secretion by MSCs from either cell source. Conclusion. Chondro-Gide and Alpha Chondro Shield were permissive to the incorporation and chondrogenic differentiation of human BM and AT MSCs. Chondro-Gide seeded with BM MSCs demonstrated the greatest increase in MSC number and deposition of a cartilaginous tissue.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The delicately orchestrated process of bone fracture healing is not always successful and long term non union of fractured bone occurs in 5-20% of all cases. Atrophic fracture non unions have been described as the most difficult to treat and this is thought to arise through a cellular and local failure of osteogenesis. However, little is known about the presence and osteogenic proficiency of cells in the local area of non union tissue. We have examined the growth and differentiation potential of cells isolated from human non union tissues compared with normal human bone marrow mesenchymal stromal cells (BMSC). We report the isolation and culture expansion of a population of non union stromal cells (NUSC) which have a CD profile similar to that of BMSC, i.e. CD34-ve, CD45-ve and CD105+ve. The NUSC demonstrated multipotentiality and differentiated to some extent along chondrogenic, adipogenic and osteogenic lineages. However, and importantly, the NUSC showed significantly reduced osteogenic differentiation and mineralization in vitro compared to BMSC. We also found increased levels of cell senescence in NUSC compared to BMSC based on culture growth kinetics and cell positivity for senescence associated beta galactosidase (SA-beta-Gal) activity. The reduced capacity of NUSC to form osteoblasts was associated with significantly elevated secretion of Dickkopf-1 (Dkk-1) which is an important inhibitor of Wnt signalling during osteogenesis, compared to BMSC. Conversely, treating BMSC with levels of rhDkk-1 that were equivalent to those levels secreted by NUSC inhibited the capacity of BMSC to undergo osteogenesis. Treating BMSC with NUSC conditioned medium also inhibited the capacity of the BMSC to undergo osteogenic differentiation when compared to their treatment with BMSC conditioned medium. Our results suggest that the development of fracture non union is linked with a localised reduced capacity of cells to undergo osteogenesis, which in turn is associated with increased cell senescence and Dkk-1 secretion.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Transglutaminases (TGs) stabilize proteins by the formation of ε(γ-glutamyl)lysine cross-links. Here, we demonstrate that the cross-linking of collagen I (COL I) by tissue transglutaminase (TG2) causes an alteration in the morphology and rheological properties of the collagen fibers. Human osteoblasts (HOB) attach, spread, proliferate, differentiate and mineralize more rapidly on this cross-linked matrix compared to native collagen. When seeded on cross-linked COL I, HOB are more resistant to the loss of cell spreading by incubation with RGD containing peptides and with α1, α2 and β1 integrin blocking antibodies. Following adhesion on cross-linked collagen, HOB show increased phosphorylation of the focal adhesion kinase, and increased expression of β1 and β3 integrins. Addition of human bone morphogenetic protein to HOB seeded on TG2 cross-linked COL I enhanced the expression of the differentiation marker bone alkaline phosphatase when compared to cross-linked collagen alone. In summary, the use of TG2-modified COL I provides a promising new scaffold for promoting bone healing. © 2014 Springer-Verlag.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background context Transplantation of bone marrow cells into spinal cord lesions promotes functional recovery in animal models, and recent clinical trials suggest possible recovery also in humans. The mechanisms responsible for these improvements are still unclear. Purpose To characterize spinal cord motor neurite interactions with human bone marrow stromal cells (MSCs) in an in vitro model of spinal cord injury (SCI). Study design/setting Previously, we have reported that human MSCs promote the growth of extending sensory neurites from dorsal root ganglia (DRG), in the presence of some of the molecules present in the glial scar, which are attributed with inhibiting axonal regeneration after SCI. We have adapted and optimized this system replacing the DRG with a spinal cord culture to produce a central nervous system (CNS) model, which is more relevant to the SCI situation. Methods We have developed and characterized a novel spinal cord culture system. Human MSCs were cocultured with spinal motor neurites in substrate choice assays containing glial scar-associated inhibitors of nerve growth. In separate experiments, MSC-conditioned media were analyzed and added to spinal motor neurites in substrate choice assays. Results As has been reported previously with DRG, substrate-bound neurocan and Nogo-A repelled spinal neuronal adhesion and neurite outgrowth, but these inhibitory effects were abrogated in MSC/spinal cord cocultures. However, unlike DRG, spinal neuronal bodies and neurites showed no inhibition to substrates of myelin-associated glycoprotein. In addition, the MSC secretome contained numerous neurotrophic factors that stimulated spinal neurite outgrowth, but these were not sufficient stimuli to promote spinal neurite extension over inhibitory concentrations of neurocan or Nogo-A. Conclusions These findings provide novel insight into how MSC transplantation may promote regeneration and functional recovery in animal models of SCI and in the clinic, especially in the chronic situation in which glial scars (and associated neural inhibitors) are well established. In addition, we have confirmed that this CNS model predominantly comprises motor neurons via immunocytochemical characterization. We hope that this model may be used in future research to test various other potential interventions for spinal injury or disease states. © 2014 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Human mesenchymal stem cell (hMSC) therapies are currently progressing through clinical development, driving the need for consistent, and cost effective manufacturing processes to meet the lot-sizes required for commercial production. The use of animal-derived serum is common in hMSC culture but has many drawbacks such as limited supply, lot-to-lot variability, increased regulatory burden, possibility of pathogen transmission, and reduced scope for process optimization. These constraints may impact the development of a consistent large-scale process and therefore must be addressed. The aim of this work was therefore to run a pilot study in the systematic development of serum-free hMSC manufacturing process. Human bone-marrow derived hMSCs were expanded on fibronectin-coated, non-porous plastic microcarriers in 100mL stirred spinner flasks at a density of 3×105cells.mL-1 in serum-free medium. The hMSCs were successfully harvested by our recently-developed technique using animal-free enzymatic cell detachment accompanied by agitation followed by filtration to separate the hMSCs from microcarriers, with a post-harvest viability of 99.63±0.03%. The hMSCs were found to be in accordance with the ISCT characterization criteria and maintained hMSC outgrowth and colony-forming potential. The hMSCs were held in suspension post-harvest to simulate a typical pooling time for a scaled expansion process and cryopreserved in a serum-free vehicle solution using a controlled-rate freezing process. Post-thaw viability was 75.8±1.4% with a similar 3h attachment efficiency also observed, indicating successful hMSC recovery, and attachment. This approach therefore demonstrates that once an hMSC line and appropriate medium have been selected for production, multiple unit operations can be integrated to generate an animal component-free hMSC production process from expansion through to cryopreservation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Production of human mesenchymal stem cells for allogeneic cell therapies requires scalable, cost-effective manufacturing processes. Microcarriers enable the culture of anchorage-dependent cells in stirred-tank bioreactors. However, no robust, transferable methodology for microcarrier selection exists, with studies providing little or no reason explaining why a microcarrier was employed. We systematically evaluated 13 microcarriers for human bone marrow-derived MSC (hBM-MSCs) expansion from three donors to establish a reproducible and transferable methodology for microcarrier selection. Monolayer studies demonstrated input cell line variability with respect to growth kinetics and metabolite flux. HBM-MSC1 underwent more cumulative population doublings over three passages in comparison to hBM-MSC2 and hBM-MSC3. In 100 mL spinner flasks, agitated conditions were significantly better than static conditions, irrespective of donor, and relative microcarrier performance was identical where the same microcarriers outperformed others with respect to growth kinetics and metabolite flux. Relative growth kinetics between donor cells on the microcarriers were the same as the monolayer study. Plastic microcarriers were selected as the optimal microcarrier for hBM-MSC expansion. HBM-MSCs were successfully harvested and characterised, demonstrating hBM-MSC immunophenotype and differentiation capacity. This approach provides a systematic method for microcarrier selection, and the findings identify potentially significant bioprocessing implications for microcarrier-based allogeneic cell therapy manufacture. Large-scale production of human bone-marrow derived mesenchymal stem cells (hBM-MSCs) requires expansion on microcarriers in agitated systems. This study demonstrates the importance of microcarrier selection and presents a systematic methodology for selection of an optimal microcarrier. The study also highlights the impact of an agitated culture environment in comparison to a static system, resulting in a significantly higher hBM-MSC yield under agitated conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the cell therapy industry continuing to grow, the ability to preserve clinical grade cells, including mesenchymal stem cells (MSCs), whilst retaining cell viability and function remains critical for the generation of off-the-shelf therapies. Cryopreservation of MSCs, using slow freezing, is an established process at lab scale. However, the cytotoxicity of cryoprotectants, like Me2SO, raises questions about the impact of prolonged cell exposure to cryoprotectant at temperatures >0 °C during processing of large cell batches for allogenic therapies prior to rapid cooling in a controlled rate freezer or in the clinic prior to administration. Here we show that exposure of human bone marrow derived MSCs to Me2SO for ≥1 h before freezing, or after thawing, degrades membrane integrity, short-term cell attachment efficiency and alters cell immunophenotype. After 2 h's exposure to Me2SO at 37 °C post-thaw, membrane integrity dropped to ∼70% and only ∼50% of cells retained the ability to adhere to tissue culture plastic. Furthermore, only 70% of the recovered MSCs retained an immunophenotype consistent with the ISCT minimal criteria after exposure. We also saw a similar loss of membrane integrity and attachment efficiency after exposing osteoblast (HOS TE85) cells to Me2SO before, and after, cryopreservation. Overall, these results show that freezing medium exposure is a critical determinant of product quality as process scale increases. Defining and reporting cell sensitivity to freezing medium exposure, both before and after cryopreservation, enables a fair judgement of how scalable a particular cryopreservation process can be, and consequently whether the therapy has commercial feasibility.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this study was to investigate the effects of elastic anisotropy on nanoindentation measurements in human tibial cortical bone. Nanoindentation was conducted in 12 different directions in three principal planes for both osteonic and interstitial lamellae. The experimental indentation modulus was found to vary with indentation direction and showed obvious anisotropy (oneway analysis of variance test, P < 0.0001). Because experimental indentation modulus in a specific direction is determined by all of the elastic constants of cortical bone, a complex theoretical model is required to analyze the experimental results. A recently developed analysis of indentation for the properties of anisotropic materials was used to quantitatively predict indentation modulus by using the stiffness matrix of human tibial cortical bone, which was obtained from previous ultrasound studies. After allowing for the effects of specimen preparation (dehydrated specimens in nanoindentation tests vs. moist specimens in ultrasound tests) and the structural properties of bone (different microcomponents with different mechanical properties), there were no statistically significant differences between the corrected experimental indentation modulus (Mexp) values and corresponding predicted indentation modulus (Mpre) values (two-tailed unpaired t-test, P < 0.5). The variation of Mpre values was found to exhibit the same trends as the corrected Mexp data. These results show that the effects of anisotropy on nanoindentation measurements can be quantitatively evaluated. © 2002 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many biological materials are known to be anisotropic. In particular, microstructural components of biological materials may grow in a preferred direction, giving rise to anisotropy in the microstructure. Nanoindentation has been shown to be an effective technique for determining the mechanical properties of microstructures as small as a few microns. However, the effects of anisotropy on the properties measured by nanoindentation have not been fully addressed. This study presents a method to account for the effects of anisotropy on elastic properties measured by nanoindentation. This method is used to correlate elastic properties determined from earlier nanoindentation experiments and from earlier ultrasonic velocity measurements in human tibial cortical bone. Also presented is a procedure to determine anisotropic elastic moduli from indentation measurements in multiple directions. © 2001 John Wiley & Sons, Inc. J Biomed Mater Res.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prostate cancer (CaP) patients with disseminated disease often suffer from severe cachexia, which contributes to mortality in advanced cancer. Human cachexia-associated protein (HCAP) was recently identified from a breast cancer library based on the available 20-amino acid sequence of proteolysis-inducing factor (PIF), which is a highly active cachectic factor isolated from mouse colon adenocarcinoma MAC16. Herein, we investigated the expression of HCAP in CaP and its potential involvement in CaP-associated cachexia. HCAP mRNA was detected in CaP cell lines, in primary CaP tissues and in its osseous metastases. In situ hybridization showed HCAP mRNA to be localized only in the epithelial cells in CaP tissues, in the metastatic foci in bone, liver and lymph node, but not in the stromal cells or in normal prostate tissues. HCAP protein was detected in 9 of 14 CaP metastases but not in normal prostate tissues from cadaveric donors or patients with organ-confined tumors. Our Western blot analysis revealed that HCAP was present in 9 of 19 urine specimens from cachectic CaP patients but not in 19 urine samples of noncachectic patients. HCAP mRNA and protein were also detected in LuCaP 35 and PC-3M xenografts from our cachectic animal models. Our results demonstrated that human CaP cells express HCAP and the expression of HCAP is associated with the progression of CaP and the development of CaP cachexia. © 2003 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(e-caprolactone) (PCL) is biocompatible, non-immunogenic and non-toxic, and slowly degrades, allowing sufficient time for tissue regeneration. PCL has the potential for application in bone and cartilage repair as it may provide the essential structure required for bone regeneration, however, an ideal scaffold system is still undeveloped. PCL fibres were prepared using the gravity spinning technique, in which collagen was either incorporated into or coated onto the 'as-spun' fibres, in order to develop novel biodegradable polymer fibres which will effectively deliver collagen and support the attachment and proliferation of human osteoblast (HOB) cells for bone regeneration. The physical and mechanical characteristics and cell fibre interactions were analysed. The PCL fibres were found to be highly flexible and inclusion of collagen did not alter the mechanical properties of PCL fibres. Overall, HOB cells were shown to effectively adhere and proliferate on all fibre platforms tested, although proliferation rates were enhanced by surface coating PCL fibres with collagen compared to PCL fibres incorporating collagen and PCL-only fibres. These findings highlight the potential of using gravity spun PCL fibres as a delivery platform for extracellular matrix proteins, such as collagen, in order to enhance cell adherence and proliferation for tissue repair.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tissue transglutaminase (tTG) is a calcium-dependent and guanosine 5'-triphosphate (GTP) binding enzyme, which catalyzes the post-translational modification of proteins by forming intermolecular ε(ϒ-glutamyl)lysine cross-links. In this study, human osteoblasts (HOBs) isolated from femoral head trabecular bone and two osteosarcoma cell lines (HOS and MG-63) were studied for their expression and localization of tTG. Quantitative evaluation of transglutaminase (TG) activity determined using the [1,414C]-putrescine incorporation assay showed that the enzyme was active in all cell types. However, there was a significantly higher activity in the cell homogenates of MG-63 cells as compared with HOB and HOS cells (p <0.001). There was no significant difference between the activity of the enzyme in HOB and HOS cells. All three cell types also have a small amount of active TG on their surface as determined by the incorporation of biotinylated cadaverine into fibronectin. Cell surface-related tTG was further shown by preincubation of cells with tTG antibody, which led to inhibition of cell attachment. Western blot analysis clearly indicated that the active TG was tTG and immunocytochemistry showed it be situated in the cytosol of the cells. In situ extracellular enzyme activity also was shown by the cell-mediated incorporation of fluorescein cadaverine into extracellular matrix (ECM) proteins. These results clearly showed that MG-63 cells have high extracellular activity, which colocalized with the ECM protein fibronectin and could be inhibited by the competitive primary amine substrate putrescine. The contribution of tTG to cell surface/matrix interactions and to the stabilization of the ECM of osteoblast cells therefore could by an important factor in the cascade of events leading to bone differentiation and mineralization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cell-based therapies have the potential to contribute to global healthcare, whereby the use of living cells and tissues can be used as medicinal therapies. Despite this potential, many challenges remain before the full value of this emerging field can be realized. The characterization of input material for cell-based therapy bioprocesses from multiple donors is necessary to identify and understand the potential implications of input variation on process development. In this work, we have characterized bone marrow derived human mesenchymal stem cells (BM-hMSCs) from multiple donors and discussed the implications of the measurable input variation on the development of autologous and allogeneic cell-based therapy manufacturing processes. The range of cumulative population doublings across the five BM-hMSC lines over 30 days of culture was 5.93, with an 18.2% range in colony forming efficiency at the end of the culture process and a 55.1% difference in the production of interleukin-6 between these cell lines. It has been demonstrated that this variation results in a range in the process time between these donor hMSC lines for a hypothetical product of over 13 days, creating potential batch timing issues when manufacturing products from multiple patients. All BM-hMSC donor lines demonstrated conformity to the ISCT criteria but showed a difference in cell morphology. Metabolite analysis showed that hMSCs from the different donors have a range in glucose consumption of 26.98 pmol cell−1 day−1, Lactate production of 29.45 pmol cell−1 day−1 and ammonium production of 1.35 pmol cell−1 day−1, demonstrating the extent of donor variability throughout the expansion process. Measuring informative product attributes during process development will facilitate progress towards consistent manufacturing processes, a critical step in the translation cell-based therapies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background aims: The cost-effective production of human mesenchymal stromal cells (hMSCs) for off-the-shelf and patient specific therapies will require an increasing focus on improving product yield and driving manufacturing consistency. Methods: Bone marrow-derived hMSCs (BM-hMSCs) from two donors were expanded for 36 days in monolayer with medium supplemented with either fetal bovine serum (FBS) or PRIME-XV serum-free medium (SFM). Cells were assessed throughout culture for proliferation, mean cell diameter, colony-forming potential, osteogenic potential, gene expression and metabolites. Results: Expansion of BM-hMSCs in PRIME-XV SFM resulted in a significantly higher growth rate (P < 0.001) and increased consistency between donors compared with FBS-based culture. FBS-based culture showed an inter-batch production range of 0.9 and 5 days per dose compared with 0.5 and 0.6 days in SFM for each BM-hMSC donor line. The consistency between donors was also improved by the use of PRIME-XV SFM, with a production range of 0.9 days compared with 19.4 days in FBS-based culture. Mean cell diameter has also been demonstrated as a process metric for BM-hMSC growth rate and senescence through a correlation (R2 = 0.8705) across all conditions. PRIME-XV SFM has also shown increased consistency in BM-hMSC characteristics such as per cell metabolite utilization, in vitro colony-forming potential and osteogenic potential despite the higher number of population doublings. Conclusions: We have increased the yield and consistency of BM-hMSC expansion between donors, demonstrating a level of control over the product, which has the potential to increase the cost-effectiveness and reduce the risk in these manufacturing processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poster. Introduction: One in five menand one half of women over the age of 50 will experience a bone fracture, whichis frequently accompanied by poor bone health. This combination of poor bonehealth and fracture is a two edge sword, because not only does poor bone healthmake fractures more likely, it also reduces the efficacy of standard fracturetreatments. Currently available surgical fixation devices that were originallydeveloped for healthy bone, such as pins, plates and bone screws, are often noteffective for patients with osteoporosis, resulting in unsatisfactory outcomesor longer and more painful recovery times. One major issue is the design ofbone screws, which can loosen or pull-out from osteoporotic bone. Osteopenicscrews with larger outer thread diameters have been developed to try andaddress this problem. The larger diameter screws have been shown to be 60–70 %stronger in lab tests of individual screws but the larger diameter screwscannot be used with the standard spacing in fixation plates without the risk ofcausing fractures between the screws. In addition, many fractures occur nearjoints where there is not room to increase the spacing between screws.Therefore, new bone screws are needed for treatment of fractures in osteoporoticbone. Materials and Methods: Afterdeveloping a novel bone screw design, we fabricated screws using rapidprototyping methods. Screws were inserted into 10 pcf density sawbones polyurethanefoam as a model for osteoporotic bone. Pull-out tests were conducted using theprototype bone screw design and the standard screw design for comparison inaccordance with ASTM 543-13. Results and Discussion: Ourprototype screws have the same outer diameter as standard bone screws, but haveoptimised threads. For pull-out tests in 10 psf density sawbones poly-urethanefoam, the prototype screw design was 60 % stronger than the standard bone screwdesign (p<0.01). Conclusion: Our novel bonescrew design provides significant improvement in standard tests with syntheticbone material. Additional tests are needed to determine if the bone screwswould be suitable for human trials.