1 resultado para horseshoe crabs
em Aston University Research Archive
Filtro por publicador
- Repository Napier (1)
- Aberdeen University (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- Aquatic Commons (114)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (1)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (22)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (5)
- Biodiversity Heritage Library, United States (5)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (5)
- Brock University, Canada (19)
- Cambridge University Engineering Department Publications Database (2)
- CentAUR: Central Archive University of Reading - UK (3)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (26)
- Cochin University of Science & Technology (CUSAT), India (15)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Archives@Colby (2)
- Digital Commons - Michigan Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (3)
- DigitalCommons - The University of Maine Research (4)
- DigitalCommons@University of Nebraska - Lincoln (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (23)
- Indian Institute of Science - Bangalore - Índia (3)
- Institutional Repository of Leibniz University Hannover (1)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (4)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (9)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (15)
- Publishing Network for Geoscientific & Environmental Data (33)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (46)
- Queensland University of Technology - ePrints Archive (10)
- Repositório Científico da Universidade de Évora - Portugal (2)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (4)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (182)
- SAPIENTIA - Universidade do Algarve - Portugal (3)
- Universidad de Alicante (1)
- Universidad Politécnica de Madrid (2)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (21)
- Universidade Federal do Pará (14)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universitat de Girona, Spain (1)
- Université de Montréal, Canada (1)
- University of Connecticut - USA (1)
- University of Michigan (8)
- University of Queensland eSpace - Australia (12)
- University of Washington (1)
- USA Library of Congress (1)
Resumo:
The quantum Jensen-Shannon divergence kernel [1] was recently introduced in the context of unattributed graphs where it was shown to outperform several commonly used alternatives. In this paper, we study the separability properties of this kernel and we propose a way to compute a low-dimensional kernel embedding where the separation of the different classes is enhanced. The idea stems from the observation that the multidimensional scaling embeddings on this kernel show a strong horseshoe shape distribution, a pattern which is known to arise when long range distances are not estimated accurately. Here we propose to use Isomap to embed the graphs using only local distance information onto a new vectorial space with a higher class separability. The experimental evaluation shows the effectiveness of the proposed approach. © 2013 Springer-Verlag.