3 resultados para horizontal movement

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the horizontal deflection behaviour of a single particle in paramagnetic fluids under a high-gradient superconducting magnetic field. A glass box was designed to carry out experiments and test assumptions. It was found that the particles were deflected away from the magnet bore centre and particles with different density and/or susceptibility settled at a certain position on the container floor due to the combined forces of gravity and magneto-Archimedes as well as lateral buoyant (displacement) force. Matlab was chosen to simulate the movement of the particle in the magnetic fluid, the simulation results were in good accordance with experimental data. The results presented here, though, are still very much in their infancy, which could potentially form the basis of a new approach to separating materials based on a combination of density and susceptibility. Graphical abstract: [Figure not available: see fulltext.] © 2014 EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the horizontal deflection behaviour of the streams of particles in paramagnetic fluids under a high-gradient superconducting magnetic field, which is the continued work on the exploration of particle magneto-Archimedes levitation. Based on the previous work on the horizontal deflection of a single particle, a glass box and collector had been designed to observe the movement of particle group in paramagnetic fluids. To get the exact separation efficiency, the method of "sink-float" involved the high density fluid polytungstate (dense medium separation) and MLA (Mineral Liberation Analyser) was performed. It was found that the particles were deflected and settled at certain positions on the container floor due to the combined forces of gravity and magneto-Archimedes forces as well as a lateral buoyancy (displacement) force. Mineral particles with different densities and susceptibilities could be deflected to different positions, thus producing groups of similar types of particles. The work described here, although in its infancy, could form the basis of new approach of separating particles based on a combination of susceptibility and density. © 2014 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Along with other diseases that can affect binocular vision, reducing the visual quality of a subject, Congenital Nystagmus (CN) is of peculiar interest. CN is an ocular-motor disorder characterized by involuntary, conjugated ocular oscillations and, while identified more than forty years ago, its pathogenesis is still under investigation. This kind of nystagmus is termed congenital (or infantile) since it could be present at birth or it can arise in the first months of life. The majority of CN patients show a considerable decrease of their visual acuity: image fixation on the retina is disturbed by nystagmus continuous oscillations, mainly horizontal. However, the image of a given target can still be stable during short periods in which eye velocity slows down while the target image is placed onto the fovea (called foveation intervals). To quantify the extent of nystagmus, eye movement recordings are routinely employed, allowing physicians to extract and analyze nystagmus main features such as waveform shape, amplitude and frequency. Use of eye movement recording, opportunely processed, allows computing "estimated visual acuity" predictors, which are analytical functions that estimate expected visual acuity using signal features such as foveation time and foveation position variability. Hence, it is fundamental to develop robust and accurate methods to measure both those parameters in order to obtain reliable values from the predictors. In this chapter the current methods to record eye movements in subjects with congenital nystagmus will be discussed and the present techniques to accurately compute foveation time and eye position will be presented. This study aims to disclose new methodologies in congenital nystagmus eye movements analysis, in order to identify nystagmus cycles and to evaluate foveation time, reducing the influence of repositioning saccades and data noise on the critical parameters of the estimation functions. Use of those functions extends the information acquired with typical visual acuity measurement (e.g., Landolt C test) and could be a support for treatment planning or therapy monitoring. © 2010 by Nova Science Publishers, Inc. All rights reserved.