209 resultados para high power fiber laser

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A theoretical model allows for the characterization and optimization of the intra-cavity pulse evolutions in high-power fiber lasers. Multi-parameter analysis of laser performance can be made at a fraction of the computational cost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A theoretical model allows for the characterization and optimization of the intra-cavity pulse evolutions in high-power fiber lasers. Multi-parameter analysis of laser performance can be made at a fraction of the computational cost. © 2010 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A theoretical model is developed which characterizes the intracavity pulse evolutions in high-power fiber lasers. It is shown that experimentally observed dynamics of the key pulse parameters can be described by a reduced model of ordinary differential equations. Critical in driving the intracavity dynamics is the amplitude and phase modulations generated by the discrete elements in the laser. The theory gives a simple geometrical description of the intracavity dynamics and possible operation modes of the laser cavity. Furthermore, it provides a simple and efficient method for optimizing the performance of complex multiparametric laser systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high-power diode-cladding-pumped Ho-doped fluoride glass fiber laser operating in cascade mode is demonstrated. The 5|6 -> 5|7 and 5|7 -> 5|8 laser transitions produced 0:77W at a measured slope efficiency of 12.4% and 0:24Wat a measured slope efficiency of 5.2%, respectively. Using a long fiber length, which forced a large threshold for the 5|7 -> 5|8 transition, a wavelength of 3:002 µm was measured at maximum output power, making this system the first watt-level fiber laser operating in the mid-IR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the rate equations describing the operation of the Er3+, Pr3+ -codoped ZBLAN fiber lasers with different pump configurations, theoretical calculations that relate to the population characteristics and optimization of CW operation of high power Er3+, Pr3+ :ZBLAN double-clad fiber lasers are presented. Using the measured ET (energy-transfer), ETU (energy-transfer-upconversion) and CR (cross-relaxation) parameters relevant to Er3+, Pr3+ -codoped ZBLAN, a good agreement between the theoretical results from the model and recently reported experimental measurements is obtained. The effects on the slope efficiency of a number of laser parameters including fiber length, reflectance of the output mirror and pumping configuration are quantitatively analyzed and used for the design and optimization of high power Er3+, Pr3+ -codoped ZBLAN fiber lasers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high-power diode-cladding-pumped Ho-doped fluoride glass fiber laser operating in cascade mode is demonstrated. The 5|6 -> 5|7 and 5|7 -> 5|8 laser transitions produced 0:77W at a measured slope efficiency of 12.4% and 0:24Wat a measured slope efficiency of 5.2%, respectively. Using a long fiber length, which forced a large threshold for the 5|7 -> 5|8 transition, a wavelength of 3:002 µm was measured at maximum output power, making this system the first watt-level fiber laser operating in the mid-IR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the rate equations describing the operation of the Er3+, Pr3+ -codoped ZBLAN fiber lasers with different pump configurations, theoretical calculations that relate to the population characteristics and optimization of CW operation of high power Er3+, Pr3+ :ZBLAN double-clad fiber lasers are presented. Using the measured ET (energy-transfer), ETU (energy-transfer-upconversion) and CR (cross-relaxation) parameters relevant to Er3+, Pr3+ -codoped ZBLAN, a good agreement between the theoretical results from the model and recently reported experimental measurements is obtained. The effects on the slope efficiency of a number of laser parameters including fiber length, reflectance of the output mirror and pumping configuration are quantitatively analyzed and used for the design and optimization of high power Er3+, Pr3+ -codoped ZBLAN fiber lasers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tunable Raman fiber lasers have attracted great interest owing to their high efficiency and reliability important for applications, such as optical fiber communications and sensing, spectroscopy, and instrument testing. Their tuning range is defined by the Raman gain bandwidth amounting to about 40 nm in telecom spectral range (∼1550 nm) for conventional silica single mode fibers (SMF). To increase the range, highly nonlinear fibers which broaden pump spectrum may be incorporated in the cavity of Raman fiber lasers, see e.g. [1]. Another approach is to involve Rayleigh scattering forming random distributed feedback in a relatively long fiber resulting in prominent flattening of the tuning curve [2]. In this paper we report on combination of these two techniques in tunable Raman fiber lasers thus providing great improvement of their output characteristics. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmentally stable high-power erbium fiber soliton lasers are constructed by Kerr or carrier-type mode locking. We obtain high-energy pulses by using relatively short fiber lengths and providing large amounts of negative dispersion with chirped fiber Bragg gratings. The pulse energies and widths generated with both types of soliton laser are found to scale with the square root of the cavity dispersion. Kerr mode locking requires pulses with an approximately three times higher nonlinear phase shift in the cavity than carrier mode locking, which leads to the generation of slightly shorter pulses with as much as seven times higher pulse energies at the mode-locking threshold.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate a high-efficiency random lasing in a 850 m span of a phosphosilicate fiber. Random distributed feedback owing to the Rayleigh backscattering in the fiber enables narrowband generation with output power of up to 7.3 W at the Stokes wavelength λS = 1308 nm from 11 Wof the pump power at λP = 1115 nm. The laser demonstrates unique generation efficiency. Near the generation threshold, more than 2 W of output power is generated from only 0.5 W of pump power excess over the generation threshold. At high pump power, the quantum conversion efficiency defined as a ratio of generated and pump photons at the laser output exceeds 100%. Itis explained by the fact that every pump photon is converted into the Stokes photon far from the output fiber end, while the Stokes photons have lower attenuation than the pump photons. © 2014 Astro Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As shown recently, a long telecommunication fibre may be treated as a natural one-dimensional random system, where lasing is possible due to a combination of random distributed feedback via Rayleigh scattering by natural refractive index inhomogeneities and distributed amplification through the Raman effect. Here we present a new type of a random fibre laser with a narrow (∼1 nm) spectrum tunable over a broad wavelength range (1535-1570 nm) with a uniquely flat (∼0.1 dB) and high (>2 W) output power and prominent (>40 %) differential efficiency, which outperforms traditional fibre lasers of the same category, e.g. a conventional Raman laser with a linear cavity formed in the same fibre by adding point reflectors. Analytical model is proposed that explains quantitatively the higher efficiency and the flatter tuning curve of the random fiber laser compared to conventional one. The other important features of the random fibre laser like "modeless" spectrum of specific shape and corresponding intensity fluctuations as well as the techniques of controlling its output characteristics are discussed. Outstanding characteristics defined by new underlying physics and the simplicity of the scheme implemented in standard telecom fibre make the demonstrated tunable random fibre laser a very attractive light source both for fundamental science and practical applications such as optical communication, sensing and secure transmission. © 2012 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmentally stable high-power erbium fiber soliton lasers are constructed by Kerr or carrier-type mode locking. We obtain high-energy pulses by using relatively short fiber lengths and providing large amounts of negative dispersion with chirped fiber Bragg gratings. The pulse energies and widths generated with both types of soliton laser are found to scale with the square root of the cavity dispersion. Kerr mode locking requires pulses with an approximately three times higher nonlinear phase shift in the cavity than carrier mode locking, which leads to the generation of slightly shorter pulses with as much as seven times higher pulse energies at the mode-locking threshold.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a theoretical description of the generation of ultra-short, high-energy pulses in two laser cavities driven by periodic spectral filtering or dispersion management. Critical in driving the intra-cavity dynamics is the nontrivial phase profiles generated and their periodic modification from either spectral filtering or dispersion management. For laser cavities with a spectral filter, the theory gives a simple geometrical description of the intra-cavity dynamics and provides a simple and efficient method for optimizing the laser cavity performance. In the dispersion managed cavity, analysis shows the generated self-similar behavior to be governed by the porous media equation with a rapidly-varying, mean-zero diffusion coefficient whose solution is the well-known Barenblatt similarity solution with parabolic profile. © 2010 Copyright SPIE - The International Society for Optical Engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a two-stage diode-pumped Er-doped fiber amplifier operating at the wavelength of 1550 nm at the repetition rate of 10-100 kHz with an average output power of up to 10 W. The first stage comprising Er-doped fiber was core-pumped at the wavelength of 1480 nm, whereas the second stage comprising double-clad Er/Yb-doped fiber was clad-pumped at the wavelength of 975 nm. The estimated peak power for the 0.4-nm full-width at half-maximum laser emission at the wavelength of 1550 nm exceeded 4-kW level. The initial 100-ns seed diode laser pulse was compressed to 3.5 ns as a result of the 34-dB total amplification. The observed 30-fold efficient pulse compression reveals a promising new nonlinear optical technique for the generation of high power short pulses for applications in eye-safe ranging and micromachining.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Generation of picosecond pulses with a peak power in excess of 7W and a duration of 24ps from a gain-switched InGaN diode laser is demonstrated for the first time.