16 resultados para hexane

em Aston University Research Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this research was to investigate the oxidation of organic compounds in molten alkali metal hydroxides containing manganates. It has been shown that controlled oxidation can be readily achieved with high specificity to give products in high yield with very short reaction times. The concurrent changes in the melt were monitored using a vibrating platinum indicator electrode with a quazi-reference electrode which was successfully developed for use in molten (Na-K)OH eutectic at 523K. Henry's Law constants for water in the molten eutectic system (Na-K)OH have been measured and used to calculate the water concentration in the melt. The electrochemistry of manganates in molten (Na-K)OH eutectic at 523K has been studied using the vibrating platinum electrode, and the existence of the species Mn(II), Mn(II!), Mn(IV), Mn(V) and Mn(VI) in such melts has been investigated at various water concentrations. The half-wave potentials of the voltammetric waves were measured versus the cathodic limit of the melt. The stability of Mn(V) or Mn(VI) in the melt was achieved by varying the water concentration. A range of organic chemicals has been passed through molten (Na-K)OH at 523K and the reactions of these chemicals with the melt have been studied. The same organics were then passed through molten (Na-K)OH containing stabilized Mn(V) or Mn{VI) without violent reaction. Methanol, allyl alcohol, propane 1, 2 diol, I-heptene and acetone were oxidized by Mn(V) and Mn(VI). Ethanol was only oxidized by Mn(VI), isopropanol and benzyl alcohol were only oxidized by Mn(V). Npropanol, butanol, 2 methyl propan-2-ol, n-hexane, n-heptane toluene and cyclohexane were unchanged by both Mn(V) and Mn(VI). Detailed experiments have been performed on the reactions of ethanol, iso-propanol and methanol in molten (Na-K)OH containing stabilized Mrt(V) or Mn(VI), and reaction mechanisms have been postulated. Ethanol and iso-propanol were oxidized to acetaldehyde and acetone respectively with a potential for useful chemical process. The oxidation of methanol could be developed as a basis for an industrial methanol disposal process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study has been undertaken of the vapor-phase adsorptive separation of n-alkanes from Kuwait kerosene (Kuwait National Petroleum Company, heavy kerosene) using zeolite molecular sieves. Due to the shortage of information on the adsorption of multicomponent systems in the open literature, the present investigation was initiated to study the effect of feed flowrate, temperature, and zeolite particle size on the height of mass transfer zone (MTZ) and the dynamic capacity of the adsorbent for multicomponent n-alkanes adsorption on a fixed-bed of zeolite type-5A. The optimum operating conditions for separation of the n-alkanes has been identified so that the effluent would also be of marketable quality. The effect of multicycle adsorption-desorption stages on the dynamic behaviour of zeolite using steam as a desorbing agent has been studied and compared with n-pentane and n-hexane as desorbing agents. The separation process comprised one cycle of adsorption using a fixed-bed of zeolite type-5A. The bed was fed with vaporized kerosene until saturation had been achieved whereby the n-alkanes were adsorbed and the denormalized material eluted. The process of adsorption-desorption was carried out isobarically at one atmosphere. A mathematical model has been developed to predict the breakthrough time using the method of characteristics. The results were in a reasonable agreement with the experimental values. This model has also been utilized to develop the equilibrium isotherm. Optimum operating conditions were achieved at a feed flowrate of 33.33 x 10-9 m3/s, a temperature of 643 K, and a particle size of (1.0 - 2.0) x 10-3 m. This yielded an HMTZ value and a dynamic capacity of 0.206 m and 9.6S3 x 10-2 kg n-alkanes/kg of zeolite respectively. These data will serve as a basis for design of a commercial plant. The purity of liquid-paraffin product desorbed using steam was 83.24 wt%. The dynamic capacity was noticed to decrease sharply with the cycle number, without intermediate reactivation of zeolite, while it was kept unchanged by intermediate reactivation. Normal hexane was found to be the best desorbing agent, the efficiency of which was mounted to 88.2%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A recent method for phase equilibria, the AGAPE method, has been used to predict activity coefficients and excess Gibbs energy for binary mixtures with good accuracy. The theory, based on a generalised London potential (GLP), accounts for intermolecular attractive forces. Unlike existing prediction methods, for example UNIFAC, the AGAPE method uses only information derived from accessible experimental data and molecular information for pure components. Presently, the AGAPE method has some limitations, namely that the mixtures must consist of small, non-polar compounds with no hydrogen bonding, at low moderate pressures and at conditions below the critical conditions of the components. Distinction between vapour-liquid equilibria and gas-liquid solubility is rather arbitrary and it seems reasonable to extend these ideas to solubility. The AGAPE model uses a molecular lattice-based mixing rule. By judicious use of computer programs a methodology was created to examine a body of experimental gas-liquid solubility data for gases such as carbon dioxide, propane, n-butane or sulphur hexafluoride which all have critical temperatures a little above 298 K dissolved in benzene, cyclo-hexane and methanol. Within this methodology the value of the GLP as an ab initio combining rule for such solutes in very dilute solutions in a variety of liquids has been tested. Using the GLP as a mixing rule involves the computation of rotationally averaged interactions between the constituent atoms, and new calculations have had to be made to discover the magnitude of the unlike pair interactions. These numbers have been seen as significant in their own right in the context of the behaviour of infinitely-dilute solutions. A method for extending this treatment to "permanent" gases has also been developed. The findings from the GLP method and from the more general AGAPE approach have been examined in the context of other models for gas-liquid solubility, both "classical" and contemporary, in particular those derived from equations-of-state methods and from reference solvent methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the main objectives of this study was to functionalise various rubbers (i.e. ethylene propylene copolymer (EP), ethylene propylene diene terpolymer (EPDM), and natural rubber (NR)) using functional monomers, maleic anhydride (MA) and glycidyl methacrylate (GMA), via reactive processing routes. The functionalisation of the rubber was carried out via different reactive processing methods in an internal mixer. GMA was free-radically grafted onto EP and EPDM in the melt state in the absence and presence of a comonomer, trimethylolpropane triacrylate (TRlS). To optinuse the grafting conditions and the compositions, the effects of various paranleters on the grafting yields and the extent of side reactions were investigated. Precipitation method and Soxhlet extraction method was established to purifY the GMA modified rubbers and the grafting degree was determined by FTIR and titration. It was found that without TRlS the grafting degree of GMA increased with increasing peroxide concentration. However, grafting was low and the homopolymerisation of GMA and crosslinking of the polymers were identified as the main side reactions competing with the desired grafting reaction for EP and EPDM, respectively. The use of the tri-functional comonomer, TRlS, was shown to greatly enhance the GMA grafting and reduce the side reactions in terms of the higher GMA grafting degree, less alteration of the rheological properties of the polymer substrates and very little formation of polyGMA. The grafting mechanisms were investigated. MA was grafted onto NR using both thermal initiation and peroxide initiation. The results showed clearly that the reaction of MA with NR could be thermally initiated above 140°C in the absence of peroxide. At a preferable temperature of 200°C, the grafting degree was increased with increasing MA concentration. The grafting reaction could also be initiated with peroxide. It was found that 2,5-dimethyl-2,5-bis(ter-butylproxy) hexane (TIOI) was a suitable peroxide to initiate the reaction efficiently above I50°C. The second objective of the work was to utilize the functionalised rubbers in a second step to achieve an in-situ compatibilisation of blends based on poly(ethylene terephthalate) (PET), in particular, with GMA-grafted-EP and -EPDM and the reactive blending was carried out in an internal mixer. The effects of GMA grafting degree, viscosities of GMAgrafted- EP and -EPDM and the presence of polyGMA in the rubber samples on the compatibilisation of PET blends in terms of morphology, dynamical mechanical properties and tensile properties were investigated. It was found that the GMA modified rubbers were very efficient in compatibilising the PET blends and this was supported by the much finer morphology and the better tensile properties. The evidence obtained from the analysis of the PET blends strongly supports the existence of the copolymers through the interfacial reactions between the grafted epoxy group in the GMA modified rubber and the terminal groups of PET in the blends.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The literature relating to the extraction of the aromatics, benzene, toluene and xylene (BTX) using different commercial solvents, and to mixer-settler design and performance, has been reviewed. Liquid-liquid equilibria of the ternary systems: hexane-benzene-sulfolane, n-heptane-toluene-sulfolane, and octane-xylene-sulfolane were determined experimentally at temperatures of 30oC, 35oC, and 40oC. The work was then extended to a multicomponent system. The data were correlated by using Hand's method and were found to be in a good agreement with theoretical predictions using the UNIFAC method. A study was made of the performance of a 10-stage laboratory mixer-settler cascade for the extraction of BTX from a synthetic reformate utilizing sulfolane as a solvent. Murphree stage efficiency decreased with stage number but 99% extraction was achievable within 4 stages. The effects of temperature, phase ratio, and agitator speed were investigated. The efficiency increased with agitator speed but > 1050 rpm resulted in secondary haze formation. An optimum temperature of 30oC was selected from the phase equilibria; the optimum solvent: feed ratio was 3:1 for 4 stages. The experimental overall mass transfer coefficients were compared with those predicted from single drop correlations and were in all cases greater, by a factor of 1.5 to 3, due to the surface renewal associated with drop break-up and coalescence promoted by agitation. A similar investigation was performed using real reformate from the Kuwait Oil Company. The phase ratios were in the range 0.5 to 1 to 3.25 to 1, the agitator speed 1050 rpm, and the operating temperature 30oC. A maximum recovery of 99% aromatics was achieved in 4 stages at a phase ratio of 3.25 to 1. A backflow model was extended to simulate conditions in the mixer-settler cascade with this multicomponent system. Overall mass transfer coefficients were estimated by obtaining the best fit between experimental and predicted concentration profiles. They were up to 10% greater than those with the synthetic feed but close agreement was not possible because the distribution coefficient and phase ratio varied with stage number. Sulfolane was demonstrated to be an excellent solvent for BTX recovery and a mixer-settler cascade was concluded to be a technically viable alternative to agitated columns for this process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main aim of this work was to study the effect of two comonomers, trimethylolpropane trimethacrylate (TRIS) and divinylbenzene (DVB) on the nature and efficiency of grafting of two different monomers, glycidyl methacrylate (GMA) and maleic anhydride (MA) on polypropylene (P) and on natural rubber (NR) using reactive processing methods. Four different peroxides, benzoyl peroxide (BPO), dicumyl peroxide (DCP), 2,5-dimethyl-2,5-bis-(tert-butyl peroxy) hexane (t-101), and 1,1-di(tert-butylperoxy)-3,3,5-trimethyl cyclohexene (T-29B90) were examined as free radical initiators. An appropriate methodology was established and chemical composition and reactive processing parameters were examined and optimised. It was found that in the absence of the coagents DVB and TRIS, the grafting degree of GMA and MA increased with increasing peroxide concentration, but the level of grafting was low and the homopolymerisaton of GMA and the crosslinking of NR or chain scission of PP were identified as the main side reactions that competed with the desired grafting reaction in the polymers. At high concentrations of the peroxide T-101 (>0.02 mr) cross linking of NR and chain scission of PP became dominant and unacceptable. An attempt to add a reactive coagent, e.g. TRIS during grafting of GMA on natural rubber resulted in excessive crosslinking because of the very high reactivity of this comonomer with the C=C of the rubber. Therefore, the use of any multifunctional and highly reactive coagent such as TRIS, could not be applied in the grafting of GAM onto natural rubber. In the case of PP, however, the use of TRIS and DVB was shown to greatly enhance the grafting degree and reduce the chain scission with very little extent of monomer homopolymerisation taking place. The results showed that the grafting degree was increased with increasing GMA and MA concentrations. It was also found that T-101 was a suitable peroxide to initiate the grafting reaction of these monomers on NR and PP and the optimum temperature for this peroxide was =160°C. A very preliminary work was also conducted on the use of the functionalised-PP (f-PP) in the absence and presence of the two comonomers (f-PP-DVB or f-PP-TRIS) for the purpose of compatibilising PP-PBT blends through reactive blending. Examination of the morphology of the blends suggested that an effective compatibilisation has been achieved when using f-PP-DVB and f-PP-TRIS, however more work is required in this area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of ethylene propylene terpolymer vulcanizates, prepared by varying termonomer type, cure system, cure time and cure temperature, are characterized by determining the number and type of cross-links present. The termonomers used represent the types currently available in commercial quantities. Characterization is carried out by measuring the C1 constant of the Mooney Rivlin Saunders equation before and after treatment with the chemical probes propane-2-thiol/piperidine and n-hexane thiol/piperidine, thus making it possible to calculate the relative proportions of mono-sulphidic, di-sulphidic and poly- sulphidic cross-links. The cure systems used included both sulphur and peroxide formulations. Specific physical properties are determined for each network and an attempt is made to correlate observed changes in these with variations in network structure. A survey of the economics of each formulation based on a calculated efficiency parameter for each cure system is included. Values of C1 are calculated from compression modulus data after the reliability of the technique when used with ethylene propylene terpolymers had been established. This is carried out by comparing values from both compression and extension stress strain measurements for natural rubber vulcanizates and by assessing the effects of sample dimensions and the degree of swelling. The technique of compression modulus is much more widely applicable than previously thought. The basic structure of an ethylene propylene terpolymer network appears to be independent of the type of cure system used ( sulphur based systems only), the proportions of constituent cross-links being nearly constant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study has been made of the effect of single extensions and continuous fatigue on the structures of various natural rubber networks. The change in network structure of a conventional vulcanisate on a single extension manifests itself as permanent set. The change in network structure has been assessed by the use of the chemical probes, propan-2-thiol/piperidine, hexane-thiol/piperidine and triphenyl phosphine, which determine the polysulphide and disulphide crosslink densities and main chain modification respectively. The permanent set induced on a single extension of a conventional sulphur vulcanisate has been shown to result from the destruction and reformation of polysulphide crosslinks. The magnitude of the effect was dependent upon the degree of extension and showed a maximum at extensions corresponding to the onset of stress-induced crystallisation. The incorporation of a reinforcing filler, HAF-carbon black, magnified the effect. Vulcanisates that possessed only mono and disulphide crosslinks did not show any significant permanent set. The continuous changes in network structure during fatigue have also been determined, and the effects of carbon black and antioxidants on these changes and the fatigue life have been assessed. During fatigue the overall crosslink density increased slightly, which resulted from the destruction of polysulphide crosslinks. and their replacement by principally disulphide crosslinks. Antioxidants reduced the rate of destruction of polysulphide crosslinks and increased the fatigue life of the rubber network. The fatigue life of the network also depended upon the concentration of free chain ends. These chain ends were incorporated into the network by masticating rubber under nitrogen in the presence of bis (diisopropyl)thiophosphoryl disulphide, which improved the fatigue resistance by up to 9%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2,5-hexanedione (2,5HD) is the neurotoxic metabolite of the aliphatic hydrocarbon n-Hexane. The isomers, 2,3-hexanedione (2,3HD) and 3,4-hexanedione (3,4HD) are used as food additives. Although the neurotoxicity of 2,5HD is well established, there are no human data of the possible toxicity of the 2,3- and 3,4- isomers. MTT and flow cytometry were utilised to determine the cytotoxicity of hexanedione isomers in neuroblastoma cells. The neuroblastoma cell lines SK-N-SH and SH-SY5Y are sufficiently neuron-like to provide preliminary assessment of the neurotoxic potential of these isomers, in comparison with toxicity towards human non-neuronal cells. Initial studies showed that 2,5HD was the least toxic in all cell lines at all times (4, 24 and 48h). Although considerably lower than for 2,5HD, in general the IC50s for the α isomers were not significantly different from each other and, besides 4h exposure, the SH-SY5Y cells were significantly more sensitive to 2,3HD and 3,4HD than the SK-N-SH cells. All three isomers caused varying degrees of apoptosis in the neuroblastoma lines, with 3,4HD more potent than 2,3HD. Flow cytometry highlighted cell cycle arrest indicative of DNA damage with 2,3- and 3,4HD. The toxicity of the isomers towards 3 non-neuronal cell lines (MCF7, HepG2 and CaCo-2) was assessed by MTT assay. All 3 hexanedione isomers proved to be cytotoxic in all non-neuronal cell lines at all time points. These data suggest cytotoxicity of 2,3- and 3,4HD (mM range), but it is difficult to define this as specific neurotoxicity in the absence of specific neurotoxic endpoints. However, the neuroblastomas were significantly more susceptible to the cytotoxic effects of the α hexanedione isomers at exposures of 4 and 24 hours, compared to non-neuronal lines. Finally, a mechanism of toxicity is suggested for the α HD isomers whereby inhibition of the oxoglutarate carrier (OGC) releases apoptosis inducing factor (AIF), causing apoptosis-like cell death.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main aim of this work was two fold, firstly to investigate the effect of a highly reactive comonomer, divinylbenzene (DVB), on the extent of melt grafting of glycidyl methacrylate (GMA) on ethylene-propylene rubber (EPR) using 2,5-dimethyl-2,5-bis-(tert-butyl peroxy) hexane (Trigon ox 101, Tl 01) as a free radical initiator, and to compare the results with a conventional grafting of the same monomer on EPR. To achieve this, the effect of processing conditions and chemical composition including the concentration of peroxide, GMA and DVB on the extent of grafting was investigated. The presence of the comonomer (DVB) in the grafting process resulted in a significant increase in the extent of the grafting using only a small concentration of peroxide. It was also found that the extent of grafting increased drastically with increasing the DVB concentration. Interestingly, in the comonomer system, the extent of the undesired side reaction, normally the homopolymerisation of GMA (polyGMA) was shown to have reduced tremendously and in most cases the level of polyGMA was immeasurable in the samples. Compared to a conventional EPR-g-GMACONV (in the absence of a comonomer), the presence of the comonomer DVB in the grafting system was shown to result in more branching and crosslinking (shown from an increase in melt flow index (MFI) and torque values) and this was paralleled by an increase in DVB concentration. In contrast, the extent of grafting in conventional system increased with increasing the peroxide concentration but the level of grafting was much lower than in the case of DVB. Homopolymerisation of GMA and excessive crosslinking of EPR became dominant at high peroxide concentration and this. reflects that the side reactions were favorable in the conventional grafting system. The second aim was to examine the effect of the in-situ functionalised EPR when used as a compatibiliser for binary blends. It was found that blending PET with functionalised EPR (ƒ-EPR) gave a significant improvement in terms of blend morphology as well as mechanical properties. The results showed clearly that, blending PET with ƒ-EPRDVB (prepared with DVB) was much more effective compared to the corresponding PET/ƒ-EPRCONV (without DVB) blends in which ƒ-EPRDVB having optimum grafting level of 2.1 wt% gave the most pronounced effect on the morphology and mechanical properties. On the other hand, blends of PET/ƒ-EPRDVB containing high GMA/DVB ratio was found to be unfavorable hence exhibited lower tensile properties and showed unfavorable morphology. The presence of high polyGMA concentration in ƒ-EPRCONV was found to create damaging effect on its morphology, hence resulting in reduced tensile properties (e.g. low elongation at break). However, the use of commercial terpolymers based on ethylene-methacrylate-glycidyl methacrylate (EM-GMA)or a copolymer of ethylene-glycidyl methacrylate (E-GMA) containing various GMA levels as compatibilisers in PET/EPR blends was found to be more efficient compared to PET/EPR/ƒ-EPR blends with the former blends showing finer morphology and high elongation at break. The high efficiency of the terpolymers or copolymers in compatibilising the PET/EPR blends is suggested to be partly, higher GMA content compared to the amount in ƒ-EPR and due to its low viscosity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The potential cytotoxicity of two hexanedione food additives (2,3 and 3,4 isomers) was evaluated in comparison with the neurotoxic hexane metabolite 2,5-hexanedione in the human SK-N-SH neuroblastoma line using the MTT assay to indicate mitochondrial dehydrogenase activity and flow cytometry to monitor the cell cycle over 48 h. The IC50s of the 2,3-hexanedione (3.3 ± 0.1 mM) and 3,4-hexanedione (3.5 ± 0.1 mM), indicated that the sensitivity of the cells was approximately seven-fold greater to these toxins compared with the 2,5 derivative (IC50 of 22.4 ± 0.2 mM). Comparison between the respective IC50s of the 2,3-hexanedione and 3,4-hexanedione revealed no difference between the two isomers in terms of their effects on MTT turnover. With flow cytometry analysis, all three hexanediones showed increases in apoptosis within their respective concentration ranges of toxicity shown previously by MTT. In the presence of 2,5-hexanedione, between 8.5 and 17 mM concentrations, there was a significant increase in apoptotic nucleoids which was accompanied by a significant fall in the percentage of nucleoids in the G0/G1 phase (72.4 ± 0.3-45.3 ± 0.6%,), and a rise in the numbers of cells in the G2/M phase. This is likely to indicate growth arrest at cell cycle G2/M checkpoint in response to toxin damage. G2/M accumulation was also shown with 3,4 and 2,3 HD, which was maximal at much lower concentrations (approximately 4 and 3 mM, respectively). Arrest at G1 and G2/M phase is indicative of inhibition of the cell cycle at the stages of DNA replication and chromosome segregation, respectively. It was also apparent that flow cytometry, rather than the MTT assay, did distinguish between the effects of the α-diketones 2,3-hexanedione and 3,4-hexanedione on the cell cycle. At a concentration of 5.8 mM 3,4-hexanedione, the percentage of apoptotic nucleoids was 10.9 ± 0.8% whilst apoptosis induced by 3,4-hexanedione had already reached a maximal level of 60.4 ± 0.5%. In summary, flow cytometry indicated that the 3,4-hexanedione derivative was more toxic than its 2,3 isomer and that both food additives caused interruption in the neuroblastoma cell cycle and further investigation may be required to assess if these α-diketones present in diets pose any possible risks to human health. © 2006 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main aim of this work was to investigate the effect of a highly reactive comonomer, divinylbenzene (DVB), on the extent of melt grafting of glycidyl methacrylate (GMA) on ethylene-propylene rubber (EPR) using 2,5-dimethyl-2,5-bis-(tert-butyl peroxy) hexane (Trigonox 101, T101) as a free radical initiator, and to compare the results with a conventional grafting of the same monomer on EPR. To achieve this, the effect of processing conditions and chemical composition including the concentration of peroxide, GMA and DVB on the extent of grafting was investigated. The presence of the comonomer (DVB) in the grafting process resulted in a significant increase in the extent of the grafting using only a small concentration of peroxide. It was also found that the extent of grafting increased drastically with the increasing DVB concentration. Interestingly, in the comonomer system, the extent of the undesired side reaction, normally the homopolymerisation of GMA (polyGMA) was shown to have reduced tremendously and in most cases the level of polyGMA was immeasurable in the samples. In contrast, the extent of grafting in conventional system increased with increasing the peroxide concentration but the level of grafting was much lower than in the case of DVB. Homopolymerisation of GMA and excessive crosslinking of EPR became dominant at high peroxide concentration and this reflects that the side reactions were favourable in the conventional grafting system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lipidome profile of fluids and tissues is a growing field as the role of lipids as signaling molecules is increasingly understood, relying on an effective and representative extraction of the lipids present. A number of solvent systems suitable for lipid extraction are commonly in use, though no comprehensive investigation of their effectiveness across multiple lipid classes has been carried out. To address this, human LDL from normolipidemic volunteers was used to evaluate five different solvent extraction protocols [Folch, Bligh and Dyer, acidified Bligh and Dyer, methanol (MeOH)-tert-butyl methyl ether (TBME), and hexane-isopropanol] and the extracted lipids were analyzed by LC-MS in a high-resolution instrument equipped with polarity switching. Overall, more than 350 different lipid species from 19 lipid subclasses were identified. Solvent composition had a small effect on the extraction of predominant lipid classes (triacylglycerides, cholesterol esters, and phosphatidylcholines). In contrast, extraction of less abundant lipids (phosphatidylinositols, lyso-lipids, ceramides, and cholesterol sulfates) was greatly influenced by the solvent system used. Overall, the Folch method was most effective for the extraction of a broad range of lipid classes in LDL, although the hexane-isopropanol method was best for apolar lipids and the MeOH-TBME method was suitable for lactosyl ceramides. Copyright © 2013 by the American Society for Biochemistry and Molecular Biology, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose. We investigated structural differences in the fatty acid profiles of lipids extracted from ex vivo contact lenses by using gas chromatography mass spectrometry (GCMS). Two lens materials (balafilcon A or lotrafilcon A) were worn on a daily or continuous wear schedule for 30 and 7 days. Methods. Lipids from subject-worn lenses were extracted using 1:1 chloroform: methanol and transmethylated using 5% sulfuric acid in methanol. Fatty acid methyl esters (FAMEs) were collected using hexane and water, and analyzed by GCMS (Varian 3800 GC, Saturn 2000 MS). Results. The gas chromatograms of lens extracts that were worn on a continuous wear schedule showed two predominant peaks, C16:0 and C18:0, both of which are saturated fatty acids. This was the case for balafilcon A and lotrafilcon A lenses. However, the gas chromatograms of lens extracts that were worn on a daily wear schedule showed saturated (C16:0, C18:0) and unsaturated (C16:1 and C18:1) fatty acids. Conclusions. Unsaturated fatty acids are degraded during sleep in contact lenses. Degradation occurred independently of lens material or subject-to-subject variability in lipid deposition. The consequences of lipid degradation are the production of oxidative products, which may be linked to contact lens discomfort. © 2014 The Association for Research in Vision and Ophthalmology, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The metabolite 2,5-hexanedione (HD) is the cause of neurotoxicity linked with chronic n-hexane exposure. Acute exposure to high levels of 2,5-HD, have also shown toxic effects in neuronal cells and non-neuronal cells. Isomers of 2,5-HD, 2,3- and 3,4-HD, added to foodstuffs, are reported to be non-toxic. The acute cytotoxic effects of 2,5-, 2,3- and 3,4-HD were evaluated in neural (NT2.N, SK-N-SH), astrocytic (CCF-STTG1) and non-neural (NT2.D1) cell lines. All the cell lines were highly resistant to 2,5-HD (34-426 mM) at 4-h exposure, although sensitivity was greatest with NT2.D1, then SK-N-SH, NT2.N and finally the CCF-STTG1 line. At 24-h exposure, cell vulnerability increased 5-10-fold. The NT2.D1 cells were again the most sensitive, followed by NT2.N, SK-N-SH and then the CCF-STTG1 cells. 2,3- and 3,4-HD (8-84 mM), were significantly more toxic towards all four cell lines compared with 2,5-HD, after 4-h exposure. After 24-h exposure there was a 12-fold increase in inhibition of MTT turnover in the SK-N-SH cells and a 4-fold increase in the CCF-STTG1 cells, compared with 2,5-HD exposure. 2,3- and 3,4-HD, were significantly less toxic to the NT2.N cells than the SK-N-SH cells after 24-h exposure to the compounds, demonstrating a differing toxin vulnerability between these neural and neuroblastoma cell lines. This study indicates that these non-neuronal and neuronal cells are acutely resistant to 2,5-HD cytotoxicity, whilst the previously unreported sensitivity of all four cell lines to the 2,3- and 3,4- isomers of HD to has been shown to be significantly greater than that of 2,5-HD. © 2006 Elsevier B.V. All rights reserved.