2 resultados para heat transport

em Aston University Research Archive


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The fluid–particle interaction inside a 150 g/h fluidised bed reactor is modelled. The biomass particle is injected into the fluidised bed and the heat, momentum and mass transport from the fluidising gas and fluidised sand is modelled. The Eulerian approach is used to model the bubbling behaviour of the sand, which is treated as a continuum. Heat transfer from the bubbling bed to the discrete biomass particle, as well as biomass reaction kinetics are modelled according to the literature. The particle motion inside the reactor is computed using drag laws, dependent on the local volume fraction of each phase. FLUENT 6.2 has been used as the modelling framework of the simulations with the whole pyrolysis model incorporated in the form of user-defined function (UDF). The study completes the fast pyrolysis modelling in bubbling fluidised bed reactors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A theoretical model for the transport phenomena in an air gap membrane distillation is presented. The model is based on the conservation equations for the mass, momentum, energy and species within the feed water solution as well as on the mass and energy balances on the membrane sides. The slip flow occurs due to the hydrophobic properties of the membrane. The slip boundary condition applied on the feed saline solution-membrane interface is taken into consideration showing its effects on process parameters particularly permeate flow, heat transfer coefficient and thermal efficiency. The theoretical model was validated with available experimental data and was found to be in good agreement especially when the slip condition is introduced. Increasing slip length from zero to 200 μm was found to increase the permeate flux and the thermal efficiency by 33% and 1.7% respectively.