21 resultados para heat conduction and convection
em Aston University Research Archive
Resumo:
Internally heated fluids are found across the nuclear fuel cycle. In certain situations the motion of the fluid is driven by the decay heat (i.e. corium melt pools in severe accidents, the shutdown of liquid metal reactors, molten salt and the passive control of light water reactors) as well as normal operation (i.e. intermediate waste storage and generation IV reactor designs). This can in the long-term affect reactor vessel integrity or lead to localized hot spots and accumulation of solid wastes that may prompt local increases in activity. Two approaches to the modeling of internally heated convection are presented here. These are based on numerical analysis using codes developed in-house and simulations using widely available computational fluid dynamics solvers. Open and closed fluid layers at around the transition between conduction and convection of various aspect ratios are considered. We determine optimum domain aspect ratio (1:7:7 up to 1:24:24 for open systems and 5:5:1, 1:10:10 and 1:20:20 for closed systems), mesh resolutions and turbulence models required to accurately and efficiently capture the convection structures that evolve when perturbing the conductive state of the fluid layer. Note that the open and closed fluid layers we study here are bounded by a conducting surface over an insulating surface. Conclusions will be drawn on the influence of the periodic boundary conditions on the flow patterns observed. We have also examined the stability of the nonlinear solutions that we found with the aim of identifying the bifurcation sequence of these solutions en route to turbulence.
Resumo:
We propose and investigate an application of the method of fundamental solutions (MFS) to the radially symmetric and axisymmetric backward heat conduction problem (BHCP) in a solid or hollow cylinder. In the BHCP, the initial temperature is to be determined from the temperature measurements at a later time. This is an inverse and ill-posed problem, and we employ and generalize the MFS regularization approach [B.T. Johansson and D. Lesnic, A method of fundamental solutions for transient heat conduction, Eng. Anal. Boundary Elements 32 (2008), pp. 697–703] for the time-dependent heat equation to obtain a stable and accurate numerical approximation with small computational cost.
Resumo:
This is a study of heat transfer in a lift-off furnace which is employed in the batch annealing of a stack of coils of steel strip. The objective of the project is to investigate the various factors which govern the furnace design and the heat transfer resistances, so as to reduce the time of the annealing cycle, and hence minimize the operating costs. The work involved mathematical modelling of patterns of gas flow and modes of heat transfer. These models are: Heat conduction and its conjectures in the steel coils;Convective heat transfer in the plates separating the coils in the stack and in other parts of the furnace; and Radiative and convective heat transfer in the furnace by using the long furnace model. An important part of the project is the development of numerical methods and computations to solve the transient models. A limited number of temperature measurements was available from experiments on a test coil in an industrial furnace. The mathematical model agreed well with these data. The model has been used to show the following characteristics of annealing furnaces, and to suggest further developments which would lead to significant savings: - The location of the limiting temperature in a coil is nearer to the hollow core than to the outer periphery. - Thermal expansion of the steel tends to open the coils, reduces their thermal conductivity in the radial direction, and hence prolongs the annealing cycle. Increasing the tension in the coils and/or heating from the core would overcome this heat transfer resistance. - The shape and dimensions of the convective channels in the plates have significant effect on heat convection in the stack. An optimal design of a channel is shown to be of a width-to-height ratio equal to 9. - Increasing the cooling rate, by using a fluidized bed instead of the normal shell and tube exchanger, would shorten the cooling time by about 15%, but increase the temperature differential in the stack. - For a specific charge weight, a stack of different-sized coils will have a shorter annealing cycle than one of equally-sized coils, provided that production constraints allow the stacking order to be optimal. - Recycle of hot flue gases to the firing zone of the furnace would produce a. decrease in the thermal efficiency up to 30% but decreases the heating time by about 26%.
Resumo:
We investigate an application of the method of fundamental solutions (MFS) to heat conduction in two-dimensional bodies, where the thermal diffusivity is piecewise constant. We extend the MFS proposed in Johansson and Lesnic [A method of fundamental solutions for transient heat conduction, Eng. Anal. Bound. Elem. 32 (2008), pp. 697–703] for one-dimensional heat conduction with the sources placed outside the space domain of interest, to the two-dimensional setting. Theoretical properties of the method, as well as numerical investigations, are included, showing that accurate results can be obtained efficiently with small computational cost.
Resumo:
In this paper we investigate an application of the method of fundamental solutions (MFS) to transient heat conduction. In almost all of the previously proposed MFS for time-dependent heat conduction the fictitious sources are located outside the time-interval of interest. In our case, however, these sources are instead placed outside the space domain of interest in the same manner as is done for stationary heat conduction. A denseness result for this method is discussed and the method is numerically tested showing that accurate numerical results can be obtained. Furthermore, a test example with boundary singularities shows that it is advisable to remove such singularities before applying the MFS.
Resumo:
We investigate an application of the method of fundamental solutions (MFS) to the backward heat conduction problem (BHCP). We extend the MFS in Johansson and Lesnic (2008) [5] and Johansson et al. (in press) [6] proposed for one and two-dimensional direct heat conduction problems, respectively, with the sources placed outside the space domain of interest. Theoretical properties of the method, as well as numerical investigations, are included, showing that accurate and stable results can be obtained efficiently with small computational cost.
Resumo:
In this paper we investigate an application of the method of fundamental solutions (MFS) to transient heat conduction in layered materials, where the thermal diffusivity is piecewise constant. Recently, in Johansson and Lesnic [A method of fundamental solutions for transient heat conduction. Eng Anal Boundary Elem 2008;32:697–703], a MFS was proposed with the sources placed outside the space domain of interest, and we extend that technique to numerically approximate the heat flow in layered materials. Theoretical properties of the method, as well as numerical investigations are included.
Resumo:
We consider a Cauchy problem for the heat equation, where the temperature field is to be reconstructed from the temperature and heat flux given on a part of the boundary of the solution domain. We employ a Landweber type method proposed in [2], where a sequence of mixed well-posed problems are solved at each iteration step to obtain a stable approximation to the original Cauchy problem. We develop an efficient boundary integral equation method for the numerical solution of these mixed problems, based on the method of Rothe. Numerical examples are presented both with exact and noisy data, showing the efficiency and stability of the proposed procedure and approximations.
Resumo:
The merits of various numerical methods for the solution of the one and two dimensional heat conduction equation with a radiation boundary condition have been examined from a practical standpoint in order to determine accuracies and efficiencies. It is found that the use of five increments to approximate the space derivatives gives sufficiently accurate results provided the time step is not too large; further, the implicit backward difference method of Liebmann (27) is found to be the most accurate method. On this basis, a new implicit method is proposed for the solution of the three-dimensional heat conduction equation with radiation boundary conditions. The accuracies of the integral and analogue computer methods are also investigated.
Resumo:
The fluid–particle interaction inside a 150 g/h fluidised bed reactor is modelled. The biomass particle is injected into the fluidised bed and the heat, momentum and mass transport from the fluidising gas and fluidised sand is modelled. The Eulerian approach is used to model the bubbling behaviour of the sand, which is treated as a continuum. Heat transfer from the bubbling bed to the discrete biomass particle, as well as biomass reaction kinetics are modelled according to the literature. The particle motion inside the reactor is computed using drag laws, dependent on the local volume fraction of each phase. FLUENT 6.2 has been used as the modelling framework of the simulations with the whole pyrolysis model incorporated in the form of user-defined function (UDF). The study completes the fast pyrolysis modelling in bubbling fluidised bed reactors.
Resumo:
The diffusion and convection of a solute suspended in a fluid across porous membranes are known to be reduced compared to those in a bulk solution, owing to the fluid mechanical interaction between the solute and the pore wall as well as steric restriction. If the solute and the pore wall are electrically charged, the electrostatic interaction between them could affect the hindrance to diffusion and convection. In this study, the transport of charged spherical solutes through charged circular cylindrical pores filled with an electrolyte solution containing small ions was studied numerically by using a fluid mechanical and electrostatic model. Based on a mean field theory, the electrostatic interaction energy between the solute and the pore wall was estimated from the Poisson-Boltzmann equation, and the charge effect on the solute transport was examined for the solute and pore wall of like charge. The results were compared with those obtained from the linearized form of the Poisson-Boltzmann equation, i.e.the Debye-Hückel equation. © 2012 The Japan Society of Fluid Mechanics and IOP Publishing Ltd.
Resumo:
The transport of a spherical solute through a long circular cylindrical pore filled with an electrolyte solution is studied numerically, in the presence of constant surface charge on the solute and the pore wall. Fluid dynamic analyses were carried out to calculate the flow field around the solute in the pore to evaluate the drag coefficients exerted on the solute. Electrical potentials around the solute in the electrolyte solution were computed based on a mean-field theory to provide the interaction energy between the charged solute and the pore wall. Combining the results of the fluid dynamic and electrostatic analyses, we estimated the rate of the diffusive and convective transport of the solute across the pore. Although the present estimates of the drag coefficients on the solute suggest more than 10% difference from existing studies, depending on the radius ratio of the solute relative to the pore and the radial position of the solute center in the pore, this difference leads to a minor effect on the hindrance factors. It was found that even at rather large ion concentrations, the repulsive electrostatic interaction between the charged solute and the pore wall of like charge could significantly reduce the transport rate of the solute.
Resumo:
The inverse problem of determining a spacewise dependent heat source, together with the initial temperature for the parabolic heat equation, using the usual conditions of the direct problem and information from two supplementary temperature measurements at different instants of time is studied. These spacewise dependent temperature measurements ensure that this inverse problem has a unique solution, despite the solution being unstable, hence the problem is ill-posed. We propose an iterative algorithm for the stable reconstruction of both the initial data and the source based on a sequence of well-posed direct problems for the parabolic heat equation, which are solved at each iteration step using the boundary element method. The instability is overcome by stopping the iterations at the first iteration for which the discrepancy principle is satisfied. Numerical results are presented for a typical benchmark test example, which has the input measured data perturbed by increasing amounts of random noise. The numerical results show that the proposed procedure gives accurate numerical approximations in relatively few iterations.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT