3 resultados para heart valve replacement

em Aston University Research Archive


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objective. Infective endocarditis (IE) is diagnosed by the Duke criteria, which can be inconclusive particularly when blood cultures are negative. This study investigated the application of polymerase chain reaction (PCR) to identify bacterial DNA in excised valvular tissue, and its role in establishing the diagnosis of IE. Methods. Ninety-eight patients undergoing valve replacement surgery were studied. Twenty-eight patients were confirmed as definite for endocarditis by the Duke criteria; nine were considered as possible and 61 had no known or previous microbial infection of the endocardium. A broad-range PCR technique was used to amplify prokaryotic 16S rRNA genes present within homogenised heart valve tissue. Subsequent DNA sequencing of the PCR amplicon allowed identification of the infecting microorganism. Results. PCR results demonstrated the presence of bacterial DNA in the heart valves obtained from 14 out of 20 (70%) definite IE patients with positive blood cultures preoperatively. The causative microorganism for one patient with definite culture negative endocarditis was identified by PCR. Two out of nine (22%) of the valves from possible endocarditis patients also had bacterial DNA present converting them into the definite criteria whereas in the valves of seven out of nine (78%) of these patients no bacterial DNA was detected. Conclusion. The application of PCR to the explanted valves in patients with possible or confirmed diagnosis can augment the Duke criteria thereby improving post-surgical antimicrobial therapeutic options. © 2003 The British Infection Society. Published by Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cardiovascular diseases (CVD) contributed to almost 30% of worldwide mortality; with heart failure being one class of CVD. One popular and widely available treatment for heart failure is the intra-aortic balloon pump (IABP). This heart assist device is used in counterpulsation to improve myocardial function by increasing coronary perfusion, and decreasing aortic end-diastolic pressure (i.e. the resistance to blood ejection from the heart). However, this device can only be used acutely, and patients are bedridden. The subject of this research is a novel heart assist treatment called the Chronic Intermittent Mechanical Support (CIMS) which was conceived to offer advantages of the IABP device chronically, whilst overcoming its disadvantages. The CIMS device comprises an implantable balloon pump, a percutaneous drive line, and a wearable driver console. The research here aims to determine the haemodynamic effect of balloon pump activation under in vitro conditions. A human mock circulatory loop (MCL) with systemic and coronary perfusion was constructed, capable of simulating various degrees of heart failure. Two prototypes of the CIMS balloon pump were made with varying stiffness. Several experimental factors (balloon inflation/deflation timing, Helium gas volume, arterial compliance, balloon pump stiffness and heart valve type) form the factorial design experiments. A simple modification to the MCL allowed flow visualisation experiments using video recording. Suitable statistical tests were used to analyse the data obtained from all experiments. Balloon inflation and deflation in the ascending aorta of the MCL yielded favourable results. The sudden balloon deflation caused the heart valve to open earlier, thus causing longer valve opening duration in a cardiac cycle. It was also found that pressure augmentation in diastole was significantly correlated with increased cardiac output and coronary flowrate. With an optimum combination (low arterial compliance and low balloon pump stiffness), systemic and coronary perfusions were increased by 18% and 21% respectively, while the aortic end-diastolic pressure (forward flow resistance) decreased by 17%. Consequently, the ratio of oxygen supply and demand to myocardium (endocardial viability ratio, EVR) increased between 33% and 75%. The increase was mostly attributed to diastolic augmentation rather than systolic unloading.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bromocriptine is an ergot alkaloid dopamine D receptor agonist that has been used extensively in the past to treat hyperprolactinaemia, galactorrhoea and Parkinsonism. It is known that hypothalamic hypodopaminergic states and disturbed circadian rhythm are associated with the development of insulin resistance, obesity and diabetes in animals and humans. When administered in the early morning at the start of the light phase, a new quick release (QR) formulation of bromocriptine appears to act centrally to reset circadian rhythms of hypothalamic dopamine and serotonin and improve insulin resistance and other metabolic abnormalities. Phase II and III clinical studies show that QR-bromocriptine lowers glycated haemoglobin by 0.6-1.2% (7-13 mmol/mol) either as monotherapy or in combination with other antidiabetes medications. Apart from nausea, the drug is well tolerated. The doses used to treat diabetes (up to 4.8 mg daily) are much lower than those used to treat Parkinson's disease and have not been associated with retroperitoneal fibrosis or heart valve abnormalities. QR-bromocriptine (Cycloset™) has recently been approved in the USA for the treatment of type 2 diabetes mellitus (T2DM). Thus, a QR formulation of bromocriptine timed for peak delivery in the early morning may provide a novel neurally mediated approach to the control of hyperglycaemia in T2DM. © 2010 Blackwell Publishing Ltd.