8 resultados para health informatics
em Aston University Research Archive
Resumo:
The Internet is becoming an increasingly important portal to health information and means for promoting health in user populations. As the most frequent users of online health information, young women are an important target population for e-health promotion interventions. Health-related websites have traditionally been generic in design, resulting in poor user engagement and affecting limited impacts on health behaviour change. Mounting evidence suggests that the most effective health promotion communication strategies are collaborative in nature, fully engaging target users throughout the development process. Participatory design approaches to interface development enable researchers to better identify the needs and expectations of users, thus increasing user engagement in, and promoting behaviour change via, online health interventions. This article introduces participatory design methods applicable to online health intervention design and presents an argument for the use of such methods in the development of e-Health applications targeted at young women.
Resumo:
We argue that, for certain constrained domains, elaborate model transformation technologies-implemented from scratch in general-purpose programming languages-are unnecessary for model-driven engineering; instead, lightweight configuration of commercial off-the-shelf productivity tools suffices. In particular, in the CancerGrid project, we have been developing model-driven techniques for the generation of software tools to support clinical trials. A domain metamodel captures the community's best practice in trial design. A scientist authors a trial protocol, modelling their trial by instantiating the metamodel; customized software artifacts to support trial execution are generated automatically from the scientist's model. The metamodel is expressed as an XML Schema, in such a way that it can be instantiated by completing a form to generate a conformant XML document. The same process works at a second level for trial execution: among the artifacts generated from the protocol are models of the data to be collected, and the clinician conducting the trial instantiates such models in reporting observations-again by completing a form to create a conformant XML document, representing the data gathered during that observation. Simple standard form management tools are all that is needed. Our approach is applicable to a wide variety of information-modelling domains: not just clinical trials, but also electronic public sector computing, customer relationship management, document workflow, and so on. © 2012 Springer-Verlag.
Resumo:
Hospitals everywhere are integrating health data using electronic health record (EHR) systems, and disparate and multimedia patient data can be input by different caregivers at different locations as encapsulated patient profiles. Healthcare institutions are also using the flexibility and speed of wireless computing to improve quality and reduce costs. We are developing a mobile application that allows doctors to efficiently record and access complete and accurate real-time patient information. The system integrates medical imagery with textual patient profiles as well as expert interactions by healthcare personnel using knowledge management and case-based reasoning techniques. The application can assist other caregivers in searching large repositories of previous patient cases. Patients' symptoms can be input to a portable device and the application can quickly retrieve similar profiles which can be used to support effective diagnoses and prognoses by comparing symptoms, treatments, diagnosis, test results and other patient information. © 2007 Sage Publications.
Resumo:
Acute life threatening events such as cardiac/respiratory arrests are often predictable in adults and children. However critical events such as unplanned extubations are considered as not predictable. This paper seeks to evaluate the ability of automated prediction systems based on feature space embedding and time series methods to predict unplanned extubations in paediatric intensive care patients. We try to exploit the trends in the physiological signals such as Heart Rate, Respiratory Rate, Systolic Blood Pressure and Oxygen saturation levels in the blood using signal processing aspects of a frame-based approach of expanding signals using a nonorthogonal basis derived from the data. We investigate the significance of the trends in a computerised prediction system. The results are compared with clinical observations of predictability. We will conclude by investigating whether the prediction capability of the system could be exploited to prevent future unplanned extubations. © 2014 IEEE.
Resumo:
The K-means algorithm is one of the most popular clustering algorithms in current use as it is relatively fast yet simple to understand and deploy in practice. Nevertheless, its use entails certain restrictive assumptions about the data, the negative consequences of which are not always immediately apparent, as we demonstrate. While more flexible algorithms have been developed, their widespread use has been hindered by their computational and technical complexity. Motivated by these considerations, we present a flexible alternative to K-means that relaxes most of the assumptions, whilst remaining almost as fast and simple. This novel algorithm which we call MAP-DP (maximum a-posteriori Dirichlet process mixtures), is statistically rigorous as it is based on nonparametric Bayesian Dirichlet process mixture modeling. This approach allows us to overcome most of the limitations imposed by K-means. The number of clusters K is estimated from the data instead of being fixed a-priori as in K-means. In addition, while K-means is restricted to continuous data, the MAP-DP framework can be applied to many kinds of data, for example, binary, count or ordinal data. Also, it can efficiently separate outliers from the data. This additional flexibility does not incur a significant computational overhead compared to K-means with MAP-DP convergence typically achieved in the order of seconds for many practical problems. Finally, in contrast to K-means, since the algorithm is based on an underlying statistical model, the MAP-DP framework can deal with missing data and enables model testing such as cross validation in a principled way. We demonstrate the simplicity and effectiveness of this algorithm on the health informatics problem of clinical sub-typing in a cluster of diseases known as parkinsonism.
Resumo:
Current tools for assessing risks associated with mental-health problems require assessors to make high-level judgements based on clinical experience. This paper describes how new technologies can enhance qualitative research methods to identify lower-level cues underlying these judgements, which can be collected by people without a specialist mental-health background. Content analysis of interviews with 46 multidisciplinary mental-health experts exposed the cues and their interrelationships, which were represented by a mind map using software that stores maps as XML. All 46 mind maps were integrated into a single XML knowledge structure and analysed by a Lisp program to generate quantitative information about the numbers of experts associated with each part of it. The knowledge was refined by the experts, using software developed in Flash to record their collective views within the XML itself. These views specified how the XML should be transformed by XSLT, a technology for rendering XML, which resulted in a validated hierarchical knowledge structure associating patient cues with risks. Changing knowledge elicitation requirements were accommodated by flexible transformations of XML data using XSLT, which also facilitated generation of multiple data-gathering tools suiting different assessment circumstances and levels of mental-health knowledge. © 2007 Informa UK Ltd All rights reserved.
Resumo:
One of the main challenges of classifying clinical data is determining how to handle missing features. Most research favours imputing of missing values or neglecting records that include missing data, both of which can degrade accuracy when missing values exceed a certain level. In this research we propose a methodology to handle data sets with a large percentage of missing values and with high variability in which particular data are missing. Feature selection is effected by picking variables sequentially in order of maximum correlation with the dependent variable and minimum correlation with variables already selected. Classification models are generated individually for each test case based on its particular feature set and the matching data values available in the training population. The method was applied to real patients' anonymous mental-health data where the task was to predict the suicide risk judgement clinicians would give for each patient's data, with eleven possible outcome classes: zero to ten, representing no risk to maximum risk. The results compare favourably with alternative methods and have the advantage of ensuring explanations of risk are based only on the data given, not imputed data. This is important for clinical decision support systems using human expertise for modelling and explaining predictions.
Resumo:
Failure to detect patients at risk of attempting suicide can result in tragic consequences. Identifying risks earlier and more accurately helps prevent serious incidents occurring and is the objective of the GRiST clinical decision support system (CDSS). One of the problems it faces is high variability in the type and quantity of data submitted for patients, who are assessed in multiple contexts along the care pathway. Although GRiST identifies up to 138 patient cues to collect, only about half of them are relevant for any one patient and their roles may not be for risk evaluation but more for risk management. This paper explores the data collection behaviour of clinicians using GRiST to see whether it can elucidate which variables are important for risk evaluations and when. The GRiST CDSS is based on a cognitive model of human expertise manifested by a sophisticated hierarchical knowledge structure or tree. This structure is used by the GRiST interface to provide top-down controlled access to the patient data. Our research explores relationships between the answers given to these higher-level 'branch' questions to see whether they can help direct assessors to the most important data, depending on the patient profile and assessment context. The outcome is a model for dynamic data collection driven by the knowledge hierarchy. It has potential for improving other clinical decision support systems operating in domains with high dimensional data that are only partially collected and in a variety of combinations.