14 resultados para hazardous waste, municipal waste, waste incineration, costs

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Considering the UK's limited capacity for waste disposal (particularly for hazardous/radiological waste) there is growing focus on waste avoidance and minimisation to lower the volumes of waste being sent to disposal. The hazardous nature of some waste can complicate its management and reduction. To address this problem there was a need for a decision making methodology to support managers in the nuclear industry as they identify ways to reduce the production of avoidable hazardous waste. The methodology we developed is called Waste And Sourcematter Analysis (WASAN). A methodology that begins the thought process at the pre-waste creation stage (i.e. Avoid). Design/methodology/ approach: The methodology analyses the source of waste, the production of waste inside the facility, the knock on effects from up/downstream facilities on waste production, and the down-selection of waste minimisation actions/options. WASAN has been applied to case studies with licencees and this paper reports on one such case study - the management of plastic bags in Enriched Uranium Residues Recovery Plant (EURRP) at Springfields (UK) where it was used to analyse the generation of radioactive plastic bag waste. Findings: Plastic bags are used in EURRP as a strategy to contain hazard. Double bagging of materials led to the proliferation of these bags as a waste. The paper reports on the philosophy behind WASAN, the application of the methodology to this problem, the results, and views from managers in EURRP. Originality/value: This paper presents WASAN as a novel methodology for analyzing the minimization of avoidable hazardous waste. This addresses an issue that is important to many industries e.g. where legislation enforces waste minimization, where waste disposal costs encourage waste avoidance, or where plant design can reduce waste. The paper forms part of the HSE Nuclear Installations Inspectorate's desire to work towards greater openness and transparency in its work and the development in its thinking.© Crown Copyright 2011.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of reliable, high powered plasma generators has resulted in many plasma processes being proposed as alternatives to existing pyrometallurgical technologies. This work evaluates the advantages and disadvantages of plasma systems by reviewing plasma generators, their integration with reactors and the process economics. Many plasma systems were shown to be technically and economically superior to existing technologies, but some of the plasma system advantages quoted in the literature were found to be impractical because of other system constraints. Process applications were limited by the power inputs available from plasma generators compared to AC electric furnaces. A series of trials were conducted where chromite and steelplant baghouse dusts were smelted in the Tetronics' 2.0 MW transferred arc/open bath reactor to confirm the operating characteristics of the plasma system and its economics. Chromite smelting was technical superior to submerged arc furnace technology, but the economics were unfavourable because of the limited power available from the water-cooled plasma torch and the high electrical energy consumption. A DC graphite electrode plasma furnace using preheated and prereduced chromite concentrates will compete economically with the submerged arc furnace. Ni, Cr and Mo were economically recovered from high alloy content steelplant dusts for recycling. Five Electric Arc Furnace dusts were smelted to produce a non-toxic residue and recover the contained zinc to an enriched zinc oxide product for recycling. It should be possible to condense the zinc vapour directly in a zinc splash condenser to increase the value of the product. Because of the limited power available from plasma generators, plasma processes will be most suitable for treating high and medium value materials such as Au, Pt, Mo, Ni, Ti, V, Cr etc at small production rates, heating metals in tundishes and ladles and remelting superalloy scrap. The treatment of environmentally hazardous waste materials is a particularly interesting application because of the additional financial incentives. Non-transferred arc plasma generators will be used for air and gas preheating in blast furnaces to reduce metallurgical coke consumptions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The article discusses the waste and source-matter analysis (WASAN) group workshop methodology designed to minimize the generation of avoidable hazardous waste. Several areas analyzed using WASAN are the behavior of a process, waste minimization inside that process, and the consequences for waste production from upstream and downstream processes falling outside of design. A group from the Enriched Uranium Residues Recovery Plant (EURRP) in Springfields, England used WASAN to analyze the generation of plastic bag waste.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biofuels derived from industry waste have potential to substitute fossil fuels (Diesel and Gasoline) in internal combustion (IC) engines. Use of waste streams as fuels would help to reduce considerably life-cycle greenhouse gas emissions and minimise waste processing costs. In this study an investigation into the fuel properties of two waste derived biofuels were carried out, they are: (i) Glidfuel (GF) biofuel - a waste stream from paper industry, and (ii) Palm Oil Mill Effluent (POME) biodiesel - biodiesel produced from palm oil industry effluent through various treatment and transesterification process. GF and POME was mixed together at various proportions and separately with fossil diesel (FD) to assess the miscibility and various physical and chemical properties of the blends. Fuel properties such as kinematic viscosity, higher heating value, water content, acid number, density, flash point temperature, CHNO content, sulphur content, ash content, oxidation stability, cetane number and copper corrosion ratings of all the fuels were measured. The properties of GF, POME and various blends were compared with the corresponding properties of the standard FD. Significance of the fuel properties and their expected effects on combustion and exhaust emission characteristics of the IC engine were discussed. Results showed that most properties of both GF and POME biodiesel were comparable to FD. Both GF and POME were miscible with each other, and also separately with the FD. Flash point temperatures of GF and POME biodiesel were 40.7°C and 158.7°C respectively. The flash point temperature of GF was about 36% lower than corresponding FD. The water content in GF and FD were 0.74 (% wt) and 0.01 (% wt) respectively. Acidity values and corrosion ratings of both GF and POME biodiesel were low compared to corresponding value for FD. The study concluded that optimum GF-POME biofuel blends can substitute fossil diesel use in IC engines.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper a Hierarchical Analytical Network Process (HANP) model is demonstrated for evaluating alternative technologies for generating electricity from MSW in India. The technological alternatives and evaluation criteria for the HANP study are characterised by reviewing the literature and consulting experts in the field of waste management. Technologies reviewed in the context of India include landfill, anaerobic digestion, incineration, pelletisation and gasification. To investigate the sensitivity of the result, we examine variations in expert opinions and carry out an Analytical Hierarchy Process (AHP) analysis for comparison. We find that anaerobic digestion is the preferred technology for generating electricity from MSW in India. Gasification is indicated as the preferred technology in an AHP model due to the exclusion of criteria dependencies and in an HANP analysis when placing a high priority on net output and retention time. We conclude that HANP successfully provides a structured framework for recommending which technologies to pursue in India, and the adoption of such tools is critical at a time when key investments in infrastructure are being made. Therefore the presented methodology is thought to have a wider potential for investors, policy makers, researchers and plant developers in India and elsewhere. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many local authorities (LAs) are currently working to reduce both greenhouse gas emissions and the amount of municipal solid waste (MSW) sent to landfill. The recovery of energy from waste (EfW) can assist in meeting both of these objectives. The choice of an EfW policy combines spatial and non-spatial decisions which may be handled using Multi-Criteria Analysis (MCA) and Geographic Information Systems (GIS). This paper addresses the impact of transporting MSW to EfW facilities, analysed as part of a larger decision support system designed to make an overall policy assessment of centralised (large-scale) and distributed (local-scale) approaches. Custom-written ArcMap extensions are used to compare centralised versus distributed approaches, using shortest-path routing based on expected road speed. Results are intersected with 1-kilometre grids and census geographies for meaningful maps of cumulative impact. Case studies are described for two counties in the United Kingdom (UK); Cornwall and Warwickshire. For both case study areas, centralised scenarios generate more traffic, fuel costs and emitted carbon per tonne of MSW processed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This research is concerned with the application of operational research techniques in the development of a long- term waste management policy by an English waste disposal authority. The main aspects which have been considered are the estimation of future waste production and the assessment of the effects of proposed systems. Only household and commercial wastes have been dealt with in detail, though suggestions are made for the extension of the effect assessment to cover industrial and other wastes. Similarly, the only effects considered in detail have been costs, but possible extensions are discussed. An important feature of the study is that it was conducted in close collaboration with a waste disposal authority, and so pays more attention to the actual needs of the authority than is usual in such research. A critical examination of previous waste forecasting work leads to the use of simple trend extrapolation methods, with some consideration of seasonal effects. The possibility of relating waste production to other social and economic indicators is discussed. It is concluded that, at present, large uncertainties in predictions are inevitable; waste management systems must therefore be designed to cope with this uncertainty. Linear programming is used to assess the overall costs of proposals. Two alternative linear programming formulations of this problem are used and discussed. The first is a straightforward approach, which has been .implemented as an interactive computer program. The second is more sophisticated and represents the behaviour of incineration plants more realistically. Careful attention is paid to the choice of appropriate data and the interpretation of the results. Recommendations are made on methods for immediate use, on the choice of data to be collected for future plans, and on the most useful lines for further research and development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ABSTRACT: There has been a growing trend towards the use of biomass as a primary energy source, which now contributes over 54% of the European pulp and paper industry energy needs [1]. The remaining part comes from natural gas, which to a large extent serves as the major source of energy for numerous recovered fiber paper mills located in regions with limited available forest resources. The cost of producing electricity to drive paper machinery and generate heat for steam is increasing as world demand for fossil fuels increases. Additionally, recovered fiber paper mills are also significant producers of fibrous sludge and reject waste material that can contain high amounts of useful energy. Currently, a majority of these waste fractions is disposed of by landspreading, incineration, or landfill. Paper mills must also pay a gate fee to process their waste streams in this way and the result of this is a further increase in operating costs. This work has developed methods to utilize the waste fractions produced at recovered fiber paper mills for the onsite production of combined heat and power (CHP) using advanced thermal conversion methods (pyrolysis and gasification) that are well suited to relatively small scales of throughput. The electrical power created would either be used onsite to power the paper making process or alternatively exported to the national grid, and the surplus heat created could also be used onsite or exported to a local customer. The focus of this paper is to give a general overview of the project progress so far and will present the experimental results of the most successful thermal conversion trials carried out by this work to date. Application: The research provides both paper mills and energy providers with methodologies to condition their waste materials for conversion into useful energy. The research also opens up new markets for gasifier and pyrolysis equipment manufacturers and suppliers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The uptake in Europe of Energy from Waste (EfW) incinerator plants has increased rapidly in recent years. In the UK, 25 municipal waste incinerators with energy recovery are now in operation; however, their waste supply chains and business practices vary significantly. With over a hundred more plant developments being considered it is important to establish best business practices for ensuring efficient environmental and operational performance. By reviewing the 25 plants we identify four suitable case study plants to compare technologies (moving grate, fluidised bed and rotary kiln), plant economics and operations. Using data collected from annual reports and through interviews and site visits we provide recommendations for improving the supply chain for waste incinerators and highlight the current issues and challenges faced by the industry. We find that plants using moving grate have a high availability of 87-92%. However, compared to the fluidised bed and rotary kiln, quantities of bottom ash and emissions of hydrogen chloride and carbon monoxide are high. The uptake of integrated recycling practices, combined heat and power, and post incineration non-ferrous metal collections needs to be increased among EfW incinerators in the UK. We conclude that one of the major difficulties encountered by waste facilities is the appropriate selection of technology, capacity, site, waste suppliers and heat consumers. This study will be of particular value to EfW plant developers, government authorities and researchers working within the sector of waste management. © 2013 Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The uptake in Europe of Energy from Waste (EfW) incinerator plants has increased rapidly in recent years. In the UK, 25 municipal waste incinerators with energy recovery are now in operation; however, their waste supply chains and business practices vary significantly. With over a hundred more plant developments being considered it is important to establish best business practices for ensuring efficient environmental and operational performance. By reviewing the 25 plants we identify four suitable case study plants to compare technologies (moving grate, fluidised bed and rotary kiln), plant economics and operations. Using data collected from annual reports and through interviews and site visits we provide recommendations for improving the supply chain for waste incinerators and highlight the current issues and challenges faced by the industry. We find that plants using moving grate have a high availability of 87-92%. However, compared to the fluidised bed and rotary kiln, quantities of bottom ash and emissions of hydrogen chloride and carbon monoxide are high. The uptake of integrated recycling practices, combined heat and power, and post incineration non-ferrous metal collections needs to be increased among EfW incinerators in the UK. We conclude that one of the major difficulties encountered by waste facilities is the appropriate selection of technology, capacity, site, waste suppliers and heat consumers. This study will be of particular value to EfW plant developers, government authorities and researchers working within the sector of waste management. © 2013 Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work studied the drying kinetics of the organic fractions of municipal solid waste (MSW) samples with different initial moisture contents and presented a new method for determination of drying kinetic parameters. A series of drying experiments at different temperatures were performed by using a thermogravimetric technique. Based on the modified Page drying model and the general pattern search method, a new drying kinetic method was developed using multiple isothermal drying curves simultaneously. The new method fitted the experimental data more accurately than the traditional method. Drying kinetic behaviors under extrapolated conditions were also predicted and validated. The new method indicated that the drying activation energies for the samples with initial moisture contents of 31.1 and 17.2 % on wet basis were 25.97 and 24.73 kJ mol−1. These results are useful for drying process simulation and industrial dryer design. This new method can be also applied to determine the drying parameters of other materials with high reliability.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Re-use of unused medicines returned from patients is currently considered unethical in the UK and these are usually destroyed by incineration. Previous studies suggest that many of these medicines may be in a condition suitable for re-use. Methods: All medicines returned over two months to participating community pharmacies and GP surgeries in Eastern Birmingham PCT were assessed for type, quantity and value. A registered pharmacist assessed packs against set criteria to determine the suitability for possible re-use. Results: Nine hundred and thirty-four return events were made from 910 patients, comprising 3765 items worth £33 608. Cardiovascular drugs (1003, 27%) and those acting on the CNS (884, 24%) were most prevalent. Returned packs had a median of 17 months remaining before expiry and one-quarter of packs (1248 out of 4291) were suitable for possible re-use. One-third of those suitable for re-use (476 out of 1248) contained drugs in the latest WHO Essential Drugs List. Conclusion: Unused medicines are returned in substantial quantities and have considerable financial value, with many in a condition suitable for re-use. We consider it appropriate to reopen the debate on the potential for re-using these medicines in developing countries where medicines are not widely available and also within the UK. © The Author 2007, Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the area of international environmental law this thesis proposes the formulation of one-step planning and permitting regulation for the integrated utilisation of new surface mines as depositories for municipal solid waste. Additionally, the utilisation of abandoned and currently operated surface mines is proposed as solid waste landfills as an integral step in their reclamation. Existing laws, litigation and issues in the United Kingdom, the U.S. and Canada are discussed because of their common legal system, language and heritage. The critical shortage of approved space for disposal of solid waste has caused an urgent and growing problem for both the waste disposal industry and society. Surface mining can serve three important environmental and societal functions inuring to the health and welfare of the public: (1) providing basic minerals for goods and construction; (20 sequentially, to provide critically needed, safe burial sites for society's wastes, and (3) to conserve land by dual purpose use and to restore derelict land to beneficial surface use. Currently, the first two functions are treated environmentally, and in regulation, as two different siting problems, yet they both are earth-disturbing and excavating industries requiring surface restoration. The processes are largely duplicative and should be combined for better efficiency, less earth disturbance, conservation of land, and for fuller and better reclamation of completed surface mines returning the surfaces to greater utility than present mined land reclamation procedures. While both industries are viewed by a developed society and its communities as "bad neighbours", they remain essential and critical for mankind's existence and welfare. The study offers successful examples of the integrated process in each country. The study argues that most non-fuel surface mine openings, if not already safe, can economically, through present containment technology, be made environmentally safe for use as solid waste landfills. Simultaneously, the procedure safeguards and monitors protection of ground and surface waters from landfill contamination.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study investigates the use of Pyroformer intermediate pyrolysis system to produce alternative diesel engines fuels (pyrolysis oil) from various biomass and waste feedstocks and the application of these pyrolysis oils in a diesel engine generating system for Combined Heat and Power (CHP) production. The pyrolysis oils were produced in a pilot-scale (20 kg/h) intermediate pyrolysis system. Comprehensive characterisations, with a view to use as engine fuels, were carried out on the sewage sludge and de-inking sludge derived pyrolysis oils. They were both found to be able to provide sufficient heat for fuelling a diesel engine. The pyrolysis oils also presented poor combustibility and high carbon deposition, but these problems could be mitigated by means of blending the pyrolysis oils with biodiesel (derived from waste cooking oil). The blends of SSPO (sewage sludge pyrolysis oil) and biodiesel (30/70 and 50/50 in volumetric ratios) were tested in a 15 kWe Lister type stationary generating system for up to 10 hours. There was no apparent deterioration observed in engine operation. With 30% SSPO blended into biodiesel, the engine presents better overall performance (electric efficiency), fuel consumption, and overall exhaust emissions than with 50% SSPO blend. An overall system analysis was carried out on a proposed integrated Pyroformer-CHP system. Combined with real experimental results, this was used for evaluating the costs for producing heat and power and char from wood pellets and sewage sludge. It is concluded that the overall system efficiencies for both types of plant can be over 40%; however the integrated CHP system is not economically viable. This is due to extraordinary project capital investment required.