11 resultados para growth model
em Aston University Research Archive
Resumo:
We study memory effects in a kinetic roughening model. For d=1, a different dynamic scaling is uncovered in the memory dominated phases; the Kardar-Parisi-Zhang scaling is restored in the absence of noise. dc=2 represents the critical dimension where memory is shown to smoothen the roughening front (a=0). Studies on a discrete atomistic model in the same universality class reconfirm the analytical results in the large time limit, while a different scaling behavior shows up for t
Resumo:
A nonlinear dynamic model of microbial growth is established based on the theories of the diffusion response of thermodynamics and the chemotactic response of biology. Except for the two traditional variables, i.e. the density of bacteria and the concentration of attractant, the pH value, a crucial influencing factor to the microbial growth, is also considered in this model. The pH effect on the microbial growth is taken as a Gaussian function G0e-(f- fc)2/G1, where G0, G1 and fc are constants, f represents the pH value and fc represents the critical pH value that best fits for microbial growth. To study the effects of the reproduction rate of the bacteria and the pH value on the stability of the system, three parameters a, G0 and G1 are studied in detail, where a denotes the reproduction rate of the bacteria, G0 denotes the impacting intensity of the pH value to microbial growth and G1 denotes the bacterial adaptability to the pH value. When the effect of the pH value of the solution which microorganisms live in is ignored in the governing equations of the model, the microbial system is more stable with larger a. When the effect of the bacterial chemotaxis is ignored, the microbial system is more stable with the larger G1 and more unstable with the larger G0 for f0 > fc. However, the stability of the microbial system is almost unaffected by the variation G0 and G1 and it is always stable for f0 < fc under the assumed conditions in this paper. In the whole system model, it is more unstable with larger G1 and more stable with larger G0 for f0 < fc. The system is more stable with larger G1 and more unstable with larger G0 for f0 > fc. However, the system is more unstable with larger a for f0 < fc and the stability of the system is almost unaffected by a for f0 > fc. The results obtained in this study provide a biophysical insight into the understanding of the growth and stability behavior of microorganisms.
Resumo:
Recent discussion of the knowledge-based economy draws increasingly attention to the role that the creation and management of knowledge plays in economic development. Development of human capital, the principal mechanism for knowledge creation and management, becomes a central issue for policy-makers and practitioners at the regional, as well as national, level. Facing competition both within and across nations, regional policy-makers view human capital development as a key to strengthening the positions of their economies in the global market. Against this background, the aim of this study is to go some way towards answering the question of whether, and how, investment in education and vocational training at regional level provides these territorial units with comparative advantages. The study reviews literature in economics and economic geography on economic growth (Chapter 2). In growth model literature, human capital has gained increased recognition as a key production factor along with physical capital and labour. Although leaving technical progress as an exogenous factor, neoclassical Solow-Swan models have improved their estimates through the inclusion of human capital. In contrast, endogenous growth models place investment in research at centre stage in accounting for technical progress. As a result, they often focus upon research workers, who embody high-order human capital, as a key variable in their framework. An issue of discussion is how human capital facilitates economic growth: is it the level of its stock or its accumulation that influences the rate of growth? In addition, these economic models are criticised in economic geography literature for their failure to consider spatial aspects of economic development, and particularly for their lack of attention to tacit knowledge and urban environments that facilitate the exchange of such knowledge. Our empirical analysis of European regions (Chapter 3) shows that investment by individuals in human capital formation has distinct patterns. Those regions with a higher level of investment in tertiary education tend to have a larger concentration of information and communication technology (ICT) sectors (including provision of ICT services and manufacture of ICT devices and equipment) and research functions. Not surprisingly, regions with major metropolitan areas where higher education institutions are located show a high enrolment rate for tertiary education, suggesting a possible link to the demand from high-order corporate functions located there. Furthermore, the rate of human capital development (at the level of vocational type of upper secondary education) appears to have significant association with the level of entrepreneurship in emerging industries such as ICT-related services and ICT manufacturing, whereas such association is not found with traditional manufacturing industries. In general, a high level of investment by individuals in tertiary education is found in those regions that accommodate high-tech industries and high-order corporate functions such as research and development (R&D). These functions are supported through the urban infrastructure and public science base, facilitating exchange of tacit knowledge. They also enjoy a low unemployment rate. However, the existing stock of human and physical capital in those regions with a high level of urban infrastructure does not lead to a high rate of economic growth. Our empirical analysis demonstrates that the rate of economic growth is determined by the accumulation of human and physical capital, not by level of their existing stocks. We found no significant effects of scale that would favour those regions with a larger stock of human capital. The primary policy implication of our study is that, in order to facilitate economic growth, education and training need to supply human capital at a faster pace than simply replenishing it as it disappears from the labour market. Given the significant impact of high-order human capital (such as business R&D staff in our case study) as well as the increasingly fast pace of technological change that makes human capital obsolete, a concerted effort needs to be made to facilitate its continuous development.
Resumo:
Growth curves of the foliose lichen Parmelia conspersa (Ehrh. Ex Ach.)Ach. Were obtained by plotting radial growth (RGR, mm yr-1) of the fastest measured lobe, the slowest measured lobe, a randomly selected lobe, and by averaging a sample of lobes from each thallus against thallus diameter. Growth curves derived from the fastest-growing lobe and by averaging lobes were asymptotic and could be fitted by the growth model of Aplin and Hill. Mean lobe width increased with thallus size, reaching a maximum at approx. 4.5 cm thallus diameter. In four out of six thalli, radial growth of lobes over four months was positively correlated with initial lobe width or area. The RGR of isolated lobes was unaffected until the base of the lobe was removed to within 1-2 mm of the tip. The concentration (micrograms mg-1 biomass) of ribitol, arabitol and mannitol was greater in the marginal lobes of large than in small thalli. The results suggested that the growth curve of P. conspersa is determined by processes that occur within individual marginal lobes and can be explained by the Aplin and Hill model. Changes in lobe width and in the productive capacity of individual lobes with thallus size are likely to be more important factors than the degree of translocation within the lobe in determining the growth curve.
Resumo:
The soil-plant-moisture subsystem is an important component of the hydrological cycle. Over the last 20 or so years a number of computer models of varying complexity have represented this subsystem with differing degrees of success. The aim of this present work has been to improve and extend an existing model. The new model is less site specific thus allowing for the simulation of a wide range of soil types and profiles. Several processes, not included in the original model, are simulated by the inclusion of new algorithms, including: macropore flow; hysteresis and plant growth. Changes have also been made to the infiltration, water uptake and water flow algorithms. Using field data from various sources, regression equations have been derived which relate parameters in the suction-conductivity-moisture content relationships to easily measured soil properties such as particle-size distribution data. Independent tests have been performed on laboratory data produced by Hedges (1989). The parameters found by regression for the suction relationships were then used in equations describing the infiltration and macropore processes. An extensive literature review produced a new model for calculating plant growth from actual transpiration, which was itself partly determined by the root densities and leaf area indices derived by the plant growth model. The new infiltration model uses intensity/duration curves to disaggregate daily rainfall inputs into hourly amounts. The final model has been calibrated and tested against field data, and its performance compared to that of the original model. Simulations have also been carried out to investigate the effects of various parameters on infiltration, macropore flow, actual transpiration and plant growth. Qualitatively comparisons have been made between these results and data given in the literature.
Resumo:
Recent investigations into cross-country convergence follow Mankiw, Romer, and Weil (1992) in using a log-linear approximation to the Swan-Solow growth model to specify regressions. These studies tend to assume a common and exogenous technology. In contrast, the technology catch-up literature endogenises the growth of technology. The use of capital stock data renders the approximations and over-identification of the Mankiw model unnecessary and enables us, using dynamic panel estimation, to estimate the separate contributions of diminishing returns and technology transfer to the rate of conditional convergence. We find that both effects are important.
Resumo:
Properties of computing Boolean circuits composed of noisy logical gates are studied using the statistical physics methodology. A formula-growth model that gives rise to random Boolean functions is mapped onto a spin system, which facilitates the study of their typical behavior in the presence of noise. Bounds on their performance, derived in the information theory literature for specific gates, are straightforwardly retrieved, generalized and identified as the corresponding macroscopic phase transitions. The framework is employed for deriving results on error-rates at various function-depths and function sensitivity, and their dependence on the gate-type and noise model used. These are difficult to obtain via the traditional methods used in this field.
Resumo:
We have studied the kinetics of the phase-separation process of mixtures of colloid and protein in solutions by real-time UV-vis spectroscopy. Complementary small-angle X-ray scattering (SAXS) was employed to determine the structures involved. The colloids used are gold nanoparticles functionalized with protein resistant oligo(ethylene glycol) (OEG) thiol, HS(CH(2))(11)(OCH(2)CH(2))(6)OMe (EG6OMe). After mixing with protein solution above a critical concentration, c*, SAXS measurements show that a scattering maximum appears after a short induction time at q = 0.0322 angstrom(-1) stop, which increases its intensity with time but the peak position does not change with time, protein concentration and salt addition. The peak corresponds to the distance of the nearest neighbor in the aggregates. The upturn of scattering intensities in the low q-range developed with time indicating the formation of aggregates. No Bragg peaks corresponding to the formation of colloidal crystallites could be observed before the clusters dropped out from the solution. The growth kinetics of aggregates is followed in detail by real-time UV-vis spectroscopy, using the flocculation parameter defined as the integral of the absorption in the range of 600-800 nm wavelengths. At low salt addition (<0.5 M), a kinetic crossover from reaction-limited cluster aggregation (RLCA) to diffusion-limited cluster aggregation (DLCA) growth model is observed, and interpreted as being due to the effective repulsive interaction barrier between colloids within the depletion potential. Above 0.5 M NaCl, the surface charge of proteins is screened significantly, and the repulsive potential barrier disappeared, thus the growth kinetics can be described by a DLCA model only.
Resumo:
Peak sales are an important metric in the pharmaceutical industry. Specifically, managers are focused on the height-of-peak-sales and the time required achieving peak sales. We analyze how order of entry and quality affect the level of peak sales and the time-to-peak-sales of pharmaceutical brands. We develop a growth model that includes these two variables as well as control variables for own and competitive marketing activities. We find that early entrants achieve peak sales later, and they have higher peak-sales levels. High-quality brands achieve peak sales earlier, and their peak-sales levels are higher. In addition, quality has a moderating effect on the order of entry effect on time-to-peak-sales. Our results indicate that late entrants have longer expected time-to-peak-sales when they introduce a brand with high quality.