10 resultados para growth curves

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth curves of four common species of crustose lichens, viz., Buellia aethalea (Ach.) Th. Fr., Lecidea tumida Massai., Rhizocarpon geographicum (L.) DC., and Rhizocarpon reductum Th. Fr. were studied at a site in south Gwynedd, north Wales, UK. Radial growth rates (RGR, mm 1.5 yr-1) were greatest in thalli of R. reductum and least in R. geographicum. Variation in RGR between thalli was greater in B. aethalea and L. tumida than in the species of Rhizocarpon. The relationship between growth rate and thallus diameter was not asymptotic; RGR increasing in smaller thalli to a maximum and then declining in larger diameter thalli. A polynomial curve was fitted to the data; the growth curves being fitted best by a second-order (quadratic) curve, the best fit to this model being shown by B. aethalea. A significant linear regression with a negative slope was also fitted to the growth of the larger thalli of each species. The data suggest that the growth curves of the four crustose lichens differ significantly from the asymptotic curves of foliose lichen species. A phase of declining RGR in larger thalli appears to be characteristic of crustose lichens and is consistent with data from lichenometric studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in the radial growth rate (RGR mm/yr) through life were studied in thalli of the foliose lichen Parmelia conspersa by two methods: (1) a cross-sectional study (Study A) in which the RGR was measured in 60 thalli from 0.2 to 13 cm in diameter, and (2) by radial growth measurements over 4.5 years of fragments, consisting of a single major lobe, which were removed from large thalli and glued to pieces of slate (Study B). Both studies suggested there was a phase of increasing RGR in small thalli followed by a more constant phase, the latter beginning at approximately a thallus radius of 6-8 mm. However, in Study B significantly increased RGR was observed during the second 6-month growth period. This phase of growth was more likely to be due to an increase in lobe width than to an effect of climate. In addition, a lobe in a large thallus with both adjacent lobes removed significantly increased in width over 1 year compared with control lobes. These results suggest that (1) mean lobe width in a thallus may be determined by the intensity of marginal competition between adjacent lobes, and (2) changes in lobe width during the life of a lichen thallus may be a factor determining the establishment of the linear phase of growth in foliose lichens. © 1992.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Growth curves of the foliose lichen Parmelia conspersa (Ehrh. Ex Ach.)Ach. Were obtained by plotting radial growth (RGR, mm yr-1) of the fastest measured lobe, the slowest measured lobe, a randomly selected lobe, and by averaging a sample of lobes from each thallus against thallus diameter. Growth curves derived from the fastest-growing lobe and by averaging lobes were asymptotic and could be fitted by the growth model of Aplin and Hill. Mean lobe width increased with thallus size, reaching a maximum at approx. 4.5 cm thallus diameter. In four out of six thalli, radial growth of lobes over four months was positively correlated with initial lobe width or area. The RGR of isolated lobes was unaffected until the base of the lobe was removed to within 1-2 mm of the tip. The concentration (micrograms mg-1 biomass) of ribitol, arabitol and mannitol was greater in the marginal lobes of large than in small thalli. The results suggested that the growth curve of P. conspersa is determined by processes that occur within individual marginal lobes and can be explained by the Aplin and Hill model. Changes in lobe width and in the productive capacity of individual lobes with thallus size are likely to be more important factors than the degree of translocation within the lobe in determining the growth curve.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Crustose species are the slowest growing of all lichens. Their slow growth and longevity, especially of the yellow-green Rhizocarpon group, has made them important for surface-exposure dating (‘lichenometry’). This review considers various aspects of the growth of crustose lichens revealed by direct measurement including: 1) early growth and development, 2) radial growth rates (RGR, mm yr-1), 3) the growth rate-size curve, and 4) the influence of environmental factors. Many crustose species comprise discrete areolae that contain the algal partner growing on the surface of a non-lichenised fungal hypothallus. Recent data suggest that ‘primary’ areolae may develop from free-living algal cells on the substratum while ‘secondary’ areolae develop from zoospores produced within the thallus. In more extreme environments, the RGR of crustose species may be exceptionally slow but considerably faster rates of growth have been recorded under more favourable conditions. The growth curves of crustose lichens with a marginal hypothallus may differ from the ‘asymptotic’ type of curve recorded in foliose and placodioid species and the latter are characterized by a phase of increasing RGR to a maximum and may be followed by a phase of decreasing growth. The decline in RGR in larger thalli may be attributable to a reduction in the efficiency of translocation of carbohydrate to the thallus margin or to an increased allocation of carbon to support mature ‘reproductive’ areolae. Crustose species have a low RGR accompanied by a low demand for nutrients and an increased allocation of carbon for stress resistance; therefore enabling colonization of more extreme environments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Variation in lichen growth rates poses a significant challenge for the application of direct lichenometry, i.e. the construction of lichen dating curves from direct measurement of growth rates. To examine the magnitude and possible causes of within-site growth variation, radial growth rates (RaGRs) of thalli of the fast-growing foliose lichen Melanelia fuliginosa ssp. fuliginosa (Fr. ex Duby) Essl. and the slow-growing crustose lichen Rhizocarpon geographicum (L.) DC. were studied on two S-facing slate rock surfaces in north Wales, UK using digital photography and an image analysis system (Image-J). RaGRs of M. fuliginosa ssp. fuliginosa varied from 0.44 to 2.63 mmyr-1 and R. geographicum from 0.10 to 1.50 mmyr-1.5. Analysis of variance suggested no significant variation in RaGRs with vertical or horizontal location on the rock, thallus diameter, aspect, slope, light intensity, rock porosity, rock surface texture, distance to nearest lichen neighbour or distance to vegetation on the rock surface. The frequency distribution of RaGR did not deviate from a normal distribution. It was concluded that despite considerable growth rate variation in both species studied, growth curves could be constructed with sufficient precision to be useful for direct lichenometry. © 2014 Swedish Society for Anthropology and Geography.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The preparation and characterisation of collagen: PCL, gelatin: PCL and gelatin/collagen:PCL biocomposites for manufacture of tissue engineered skin substitutes are reported. Films of collagen: PLC, gelatin: PCL (1:4, 1:8 and 1:20 w/w) and gelatin/collagen:PCL (1:8 and 1:20 w/w) biocomposites were prepared by impregnation of lyophilised collagen and/or gelatin mats by PCL solutions followed by solvent evaporation. In vitro assays of total protein release of collagen:PCL and gelatin: PCL biocomposite films revealed an expected inverse relationship between the collagen release rate and the content of synthetic polymer in the biocomposite samples that may be exploited for controlled presentation and release of biopharmaceuticals such as growth factors. Good compatibility of all biocomposite groups was proven by interaction with 3T3 fibroblasts, normal human epidermal keratinocytes (NHEK), and primary human epidermal keratinocytes (PHEK) and dermal fibroblasts (PHDF) in vitro respectively. The 1:20 collagen: PCL materials exhibiting good cell growth curves and mechanical characteristics were selected for engineering of skin substitutes in this work. The tissue-engineered skin model based on single-donor PHEK and PHDF with differentiated confluent epidermal layer and fibrous porous dermal layer was then developed successfully in vitro proven by SEM and immunohistochemistry assay. The following in vivo animal study on athymic mice revealed early complete wound healing in 10 days and good integration of co-cultured skin substitutes with adjacent mice skin structures. Thus the co-cultured skin substitutes based on 1:20 collagen: PCL biocomposite membranes was proven in principle. The approach to skin modelling reported here may find application in wound treatment, gene therapy and screening of new pharmaceuticals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the bulge test, a sheet metal specimen is clamped over a circular hole in a die and formed into a bulge by the hydraulic pressure on one side of the specirnen. As the unsupported part of the specimen is deformed in this way, its area is increased, in other words, the material is generally stretched and its thickness generally decreased. The stresses causing this stretching action are the membrane stresses in the shell generated by the hydraulic pressure, in the same way as the rubber in a toy balloon is stretched by the membrane stresses caused by the air inside it. The bulge test is a widely used sheet metal test, to determine the "formability" of sheet materials. Research on this forming process (2)-(15)* has hitherto been almost exclusively confined to predicting the behaviour of the bulged specimen through the constitutive equations (stresses and strains in relation to displacements and shapes) and empirical work hardening characteristics of the material as determined in the tension test. In the present study the approach is reversed; the stresses and strains in the specimen are measured and determined from the geometry of the deformed shell. Thus, the bulge test can be used for determining the stress-strain relationship in the material under actual conditions in sheet metal forming processes. When sheet materials are formed by fluid pressure, the work-piece assumes an approximately spherical shape, The exact nature and magnitude of the deviation from the perfect sphere can be defined and measured by an index called prolateness. The distribution of prolateness throughout the workpiece at any particular stage of the forming process is of fundamental significance, because it determines the variation of the stress ratio on which the mode of deformation depends. It is found. that, before the process becomes unstable in sheet metal, the workpiece is exactly spherical only at the pole and at an annular ring. Between the pole and this annular ring the workpiece is more pointed than a sphere, and outside this ring, it is flatter than a sphere. In the forming of sheet materials, the stresses and hence the incremental strains, are closely related to the curvatures of the workpiece. This relationship between geometry and state of stress can be formulated quantitatively through prolateness. The determination of the magnitudes of prolateness, however, requires special techniques. The success of the experimental work is due to the technique of measuring the profile inclination of the meridional section very accurately. A travelling microscope, workshop protractor and surface plate are used for measurements of circumferential and meridional tangential strains. The curvatures can be calculated from geometry. If, however, the shape of the workpiece is expressed in terms of the current radial (r) and axial ( L) coordinates, it is very difficult to calculate the curvatures within an adequate degree of accuracy, owing to the double differentiation involved. In this project, a first differentiation is, in effect, by-passed by measuring the profile inclination directly and the second differentiation is performed in a round-about way, as explained in later chapters. The variations of the stresses in the workpiece thus observed have not, to the knowledge of the author, been reported experimentally. The static strength of shells to withstand fluid pressure and their buckling strength under concentrated loads, both depend on the distribution of the thickness. Thickness distribution can be controlled to a limited extent by changing the work hardening characteristics of the work material and by imposing constraints. A technique is provided in this thesis for determining accurately the stress distribution, on which the strains associated with thinning depend. Whether a problem of controlled thickness distribution is tackled by theory, or by experiments, or by both combined, the analysis in this thesis supplies the theoretical framework and some useful experimental techniques for the research applied to particular problems. The improvement of formability by allowing draw-in can also be analysed with the same theoretical and experimental techniques. Results on stress-strain relationships are usually represented by single stress-strain curves plotted either between one stress and one strain (as in the tension or compression tests) or between the effective stress and effective strain, as in tests on tubular specimens under combined tension, torsion and internal pressure. In this study, the triaxial stresses and strains are plotted simultaneously in triangular coordinates. Thus, both stress and strain are represented by vectors and the relationship between them by the relationship between two vector functions. From the results so obtained, conclusions are drawn on both the behaviour and the properties of the material in the bulge test. The stress ratios are generally equal to the strain-rate ratios (stress vectors collinear with incremental strain vectors) and the work-hardening characteristics, which apply only to the particular strain paths are deduced. Plastic instability of the material is generally considered to have been reached when the oil pressure has attained its maximum value so that further deformation occurs under a constant or lower pressure. It is found that the instability regime of deformation has already occurred long before the maximum pressure is attained. Thus, a new concept of instability is proposed, and for this criterion, instability can occur for any type of pressure growth curves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The size frequency distributions of diffuse, primitive and cored senile plaques (SP) were studied in single sections of the temporal lobe from 10 patients with Alzheimer’s disease (AD). The size distribution curves were unimodal and positively skewed. The size distribution curve of the diffuse plaques was shifted towards larger plaques while those of the neuritic and cored plaques were shifted towards smaller plaques. The neuritic/diffuse plaque ratio was maximal in the 11 – 30 micron size class and the cored/ diffuse plaque ratio in the 21 – 30 micron size class. The size distribution curves of the three types of plaque deviated significantly from a log-normal distribution. Distributions expressed on a logarithmic scale were ‘leptokurtic’, i.e. with excess of observations near the mean. These results suggest that SP in AD grow to within a more restricted size range than predicted from a log-normal model. In addition, there appear to be differences in the patterns of growth of diffuse, primitive and cored plaques. If neuritic and cored plaques develop from earlier diffuse plaques, then smaller diffuse plaques are more likely to be converted to mature plaques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Certain species of crustose lichens have concentrically zoned margins which probably represent yearly growth rings. These marginal growth rings offer an alternative method of studying annual growth fluctuations, establishing growth rate-size curves, and determining the age of thalli for certain crustose species. Hence, marginal growth rings represent a potentially valuable, unexploited, tool in lichenometry. In a preliminary study, we measured the widths of the successive marginal rings in 25 thalli of Ochrolechia parella (L.) Massal., growing at a maritime site in north Wales. Mean ring widths of all thalli varied from a minimum of 1.02 mm (the outermost ring) to a maximum of 2.06 mm (the third ring from the margin). There is some suggestion that marginal ring width and thallus size are positively correlated; and hence that growth rates increase in larger thalli in this small population. In a further study on recently exposed bedrock adjacent to Breidalon, SE Iceland, we examined the potential for using marginal growth rings to estimate thallus age of a lichen tentatively identified as a Rhizocarpon (possibly R. concentricum (Davies) Beltram.) and thus confirm the timing of surface exposure (c. 50 years). Collectively, these results suggest: 1) the measurement of marginal rings is a possible alternative method of studying the growth of crustose lichens; 2) O. parella may grow differently to other crustose species, exhibiting a rapidly increasing radial growth rate in thalli >40 mm; 3) where lichens with marginal rings grow on recently exposed surfaces (<60 yrs), minimum age estimates can be made using growth rings as an in situ indication of lichen growth rate; 4) it is suggested that this phenomenon could provide a valuable, previously unexploited, in situ lichenometric-dating tool in areas lacking calibration control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some species of crustose lichens, such as Ochrolechia parella (L.) Massal., exhibit concentric marginal rings, which may represent an alternative technique of measuring growth rates and potentially, a new lichenometric dating method. To examine this hypothesis, the agreement and correlation between ring widths and directly measured annual radial growth rates (RaGR, mm a-1) were studied in 24 thalli of O. parella in north Wales, UK, using digital photography and image analysis. Variation in ring width was observed at different locations around a thallus, between thalli, and from year to year. The best agreement and correlation between ring width and lichen growth rates was between mean width of the outer two rings (measured in 2011) and mean RaGR (in 2009/10). The O. parella data suggest that mean width of the youngest two growth rings, averaged over a sample of thalli, is a predictor of recent growth rates and therefore could be used in lichenometry. Potential applications include as a convenient method of comparing lichen growth rates on surfaces in different environmental settings; and as an alternative method of constructing lichen growth-rate curves, without having to revisit the same lichen thalli over many years. However, care is needed when using growth rings to estimate growth rates as: growth ring widths may not be stable; ring widths exhibit spatial and temporal variation; rings may not represent 1-year's growth in all thalli; and adjacent rings may not always represent successive year's growth.