10 resultados para green manufacturing
em Aston University Research Archive
Resumo:
This special issue of International Journal of Production Research provides a platform for sharing the knowledge base, recent research outputs and a review of recent developments highlighting the critical aspects of green manufacturing supply chain design and operations decision support. The special issue includes 15 contributions presenting new and significant research in the relevant area. Contributions mainly present either a novel green/sustainable manufacturing supply chain design and operations decision support approach applied to a problem, or a state-of-the-art method on green/sustainable factors in supply chain design and operations. The article delineates an overview of the contributions and their significance, and an introspection on the ‘green’ factors involved.
Resumo:
Purpose: The purpose of this paper is to focus on investigating and benchmarking green operations initiatives in the automotive industry documented in the environmental reports of selected companies. The investigation roadmaps the main environmental initiatives taken by the world's three major car manufacturers and benchmarks them against each other. The categorisation of green operations initiatives that is provided in the paper can also help companies in other sectors to evaluate their green practices. Design/methodology/approach: The first part of the paper is based on existing literature on the topic of green and sustainable operations and the "unsustainable" context of automotive production. The second part relates to the roadmap and benchmarking of green operations initiatives based on an analysis of secondary data from the automotive industry. Findings: The findings show that the world's three major car manufacturers are pursuing various environmental initiatives involving the following green operations practices: green buildings, eco-design, green supply chains, green manufacturing, reverse logistics and innovation. Research limitations/implications: The limitations of this paper start from its selection of the companies, which was made using production volume and country of origin as the principal criteria. There is ample evidence that other, smaller, companies are pursuing more sophisticated and original environmental initiatives. Also, there might be a gap between what companies say they do in their environmental reports and what they actually do. Practical implications: This paper helps practitioners in the automotive industry to benchmark themselves against the major volume manufacturers in three different continents. Practitioners from other industries will also find it valuable to discover how the automotive industry is pursuing environmental initiatives beyond manufacturing, apart from the green operations practices covering broadly all the activities of operations function. Originality/value: The originality of the paper is in its up-to-date analysis of environmental reports of automotive companies. The paper offers value for researchers and practitioners due to its contribution to the green operations literature. For instance, the inclusion of green buildings as part of green operations practices has so far been neglected by most researchers and authors in the field of green and sustainable operations. © Emerald Group Publishing Limited.
Resumo:
The main purpose of this research is to develop and deploy an analytical framework for measuring the environmental performance of manufacturing supply chains. This work's theoretical bases combine and reconcile three major areas: supply chain management, environmental management and performance measurement. Researchers have suggested many empirical criteria for green supply chain (GSC) performance measurement and proposed both qualitative and quantitative frameworks. However, these are mainly operational in nature and specific to the focal company. This research develops an innovative GSC performance measurement framework by integrating supply chain processes (supplier relationship management, internal supply chain management and customer relationship management) with organisational decision levels (both strategic and operational). Environmental planning, environmental auditing, management commitment, environmental performance, economic performance and operational performance are the key level constructs. The proposed framework is then applied to three selected manufacturing organisations in the UK. Their GSC performance is measured and benchmarked by using the analytic hierarchy process (AHP), a multiple-attribute decision-making technique. The AHP-based framework offers an effective way to measure and benchmark organisations’ GSC performance. This study has both theoretical and practical implications. Theoretically it contributes holistic constructs for designing a GSC and managing it for sustainability; and practically it helps industry practitioners to measure and improve the environmental performance of their supply chain. © 2013 Copyright Taylor and Francis Group, LLC. CORRIGENDUM DOI 10.1080/09537287.2012.751186 In the article ‘Green supply chain performance measurement using the analytic hierarchy process: a comparative analysis of manufacturing organisations’ by Prasanta Kumar Dey and Walid Cheffi, Production Planning & Control, 10.1080/09537287.2012.666859, a third author is added which was not included in the paper as it originally appeared. The third author is Breno Nunes.
Resumo:
This paper discusses the possible contributions from modularity and industrial condominiums towards enhancing environmental performance in the automotive industry. The research described in this study is underpinned by a review of journal articles and books on the topics of: modularity of production systems; green operations practices, and the automotive industry and sustainability. The methodology is based on theoretical analysis of the contribution of the modular production system characteristics used in the automotive industry for Green Operations Practices (GOP). The following GOPs were considered: green buildings, eco-design, green supply chains, greener manufacturing, and reverse logistics. The results are theoretical in nature; however, due to the small number of studies that investigate the relationship between modularity and sustainability, this work is relevant to increase knowledge in academic circles and among practitioners in order to understand the possible environmental benefits from modular production systems. For instance, based upon our analysis, we could deduce that the existing modular production systems in the automotive industry may contribute in different ways to the implementation of GOPs. In all types of modularity, product simplification through the use of modules can enhance environmental performance and facilitate further activities such as maintenance and repair contributing to a longer life of cars on the road. Moreover, modules will make automobiles easier to disassembly, so increasing the chances of reuse of valuable components and a better final disposal of scrap. Regarding the potential benefits of each type of modularity, it is expected that modular consortia will have a better integration of environmental practices with suppliers and seize on high efficiency during manufacturing and logistics compared with conventional production systems.
Resumo:
This paper proposes a more profound discussion of the philosophical underpins of sustainability than currently exists in the MOT literature and considers their influence on the construction of the theories on green operations and technology management. Ultimately, it also debates the link between theory and practice on this subject area. The paper is derived from insights gained in three research projects completed during the past twelve years, primarily involving the first author. From 2000 to 2002, an investigation using scenario analysis, aimed at reducing atmospheric pollution in urban centres by substituting natural gas for petrol and diesel, provided the first set of insights about public policy, environmental impacts, investment analysis, and technological feasibility. The second research project, from 2003 to 2005, using a survey questionnaire, was aimed at improving environmental performance in livestock farming and explored the issues of green supply chain scope, environmental strategy and priorities. Finally, the third project, from 2006 to 2011, investigated environmental decisions in manufacturing organisations through case study research and examined the underlying sustainability drivers and decision-making processes. By integrating the findings and conclusions from these projects, the link between philosophy, theory, and practice of green operations and technology management is debated. The findings from all these studies show that the philosophical debate seems to have little influence on theory building so far. For instance, although ‘sustainable development’ emphasises ‘meeting the needs of current and future generation’, no theory links essentiality and environmental impacts. Likewise, there is a weak link between theory and the practical issues of green operations and technology management. For example, the well-known ‘life-cycle analysis’ has little application in many cases because the life cycle of products these days is dispersed within global production and consumption systems and there are different stakeholders for each life cycle stage. The results from this paper are relevant to public policy making and corporate environmental strategy and decision making. Most of the past and current studies in the subject of green operations and sustainability management deal with only a single sustainability dimension at any one time. Here the value and originality of this paper lies in its integration between philosophy, theory, and practice of green technology and operations management.
Resumo:
Online case studies. Managing Innovation is an established, bestselling text for MBA, MSc and advanced undergraduate courses on management of technology, innovation management and entrepreneurship. It is also used widely by managers in both the service and manufacturing sectors. Now in its fourth edition, Managing Innovation has been fully revised and updated based on extensive user feedback to incorporate the latest findings and techniques in innovation management. The authors have included a new and more explicit innovation model, which is used throughout the book and have introduced two new features – Research Notes and Views from the Front Line – to incorporate more real life case material into the book. The strong evidence–based and practical approach makes this a must–read for anyone studying or working within innovation. An extensive website accompanies this text at www.managing–innovation.com. Readers can browse an online database of audio and video clips, as well as case study material, interactive exercises and tools for innovation, whilst lecturers can find additional support material including instructor slides and teaching guides and tips. "Tidd and Bessant's text has become a standard for students and practitioners of innovation. They offer a lively account on innovation management full of interesting and new examples, but one that at the same is rigorously anchored in what we have learned over the last thirty years on how to manage that ultimate business challenge of renewing products, processes, and business models. Those who want to innovate must read this book." — Professor Arnoud De Meyer, Director, Judge Business School, University of Cambridge, UK "Innovation matters and this book by two leaders in the field which is clear and practical as well as rigorous should be essential reading for all seeking to study or to become involved in innovation." — Chris Voss, Professor of Operations and Technology Management, London Business School "...comprehensive and comprehensible compendium on the management of innovation. It is very well organized and very well presented. A pedagogic tool that will work at multiple levels for those wishing to gain deeper insights into some of the most challenging and important management issues of the day." — David J. Teece, Thomas W. Tusher Professor in Global Business, Haas School of Business, University of California, Berkeley, USA "Those of us who teach in the field of Innovation Management were delighted when the first edition of this book appeared 11 years ago. The field had long been in need of such a comprehensive and integrated empirically–based work. The fact that this is now the 4th edition is clear testimony to the value of its contribution. We are deeply indebted to the authors for their dedication and diligence in providing us with this updated and expanded volume." — Thomas J. Allen,Howard W. Johnson Professor of Management, MIT Sloan School of Management, USA.
Resumo:
This paper discusses the possible contributions from modularity and industrial condominiums towards enhancing environmental performance in the automotive industry. The research described in this study is underpinned by a review of journal articles and books on the topics of: modularity of production systems; green operations practices, and the automotive industry and sustainability. The methodology is based on theoretical analysis of the contribution of the modular production system characteristics used in the automotive industry for Green Operations Practices (GOP). The following GOPs were considered: green buildings, eco design, green supply chains, greener manufacturing, and reverse logistics. The results are theoretical in nature; however, due to the small number of studies that investigate the relationship between modularity and sustainability, this work is relevant to increase knowledge in academic circles and among practitioners in order to understand the possible environmental benefits from modular production systems.
Resumo:
The purpose of this paper is to delineate a green supply chain (GSC) performance measurement framework using an intra-organisational collaborative decision-making (CDM) approach. A fuzzy analytic network process (ANP)-based green-balanced scorecard (GrBSc) has been used within the CDM approach to assist in arriving at a consistent, accurate and timely data flow across all cross-functional areas of a business. A green causal relationship is established and linked to the fuzzy ANP approach. The causal relationship involves organisational commitment, eco-design, GSC process, social performance and sustainable performance constructs. Sub-constructs and sub-sub-constructs are also identified and linked to the causal relationship to form a network. The fuzzy ANP approach suitably handles the vagueness of the linguistics information of the CDM approach. The CDM approach is implemented in a UK-based carpet-manufacturing firm. The performance measurement approach, in addition to the traditional financial performance and accounting measures, aids in firms decision-making with regard to the overall organisational goals. The implemented approach assists the firm in identifying further requirements of the collaborative data across the supply-cain and information about customers and markets. Overall, the CDM-based GrBSc approach assists managers in deciding if the suppliers performances meet the industry and environment standards with effective human resource. © 2013 Taylor & Francis.
Resumo:
This paper investigates the strategic environmental decisions of a luxury car manufacturer. Through case study research, the investigation sheds light on why and how the company is adopting green technologies. Being pressured by different stakeholders to become greener, luxury car manufacturers carry significant opportunities for environmental improvement given the nature of their manufacturing processes and products. Because of their low-volume production, manufacturers may be able to increase output and still reduce overall emissions when compared to high-volume manufacturers. In the case study company this was found to be possible only because of new ideas brought by a change in ownership. Luxury manufacturers may also be a test-bed for the development and experimentation of green technologies as part of a strategic approach to environmental initiatives. This paper contributes to the fields of green technology adoption and operations strategy in automotive manufacturing groups.