6 resultados para greedy advance (GA)
em Aston University Research Archive
Resumo:
An approach for effective implementation of greedy selection methodologies, to approximate an image partitioned into blocks, is proposed. The method is specially designed for approximating partitions on a transformed image. It evolves by selecting, at each iteration step, i) the elements for approximating each of the blocks partitioning the image and ii) the hierarchized sequence in which the blocks are approximated to reach the required global condition on sparsity. © 2013 IEEE.
Resumo:
An approach for effective implementation of greedy selection methodologies, to approximate an image partitioned into blocks, is proposed. The method is specially designed for approximating partitions on a transformed image. It evolves by selecting, at each iteration step, i) the elements for approximating each of the blocks partitioning the image and ii) the hierarchized sequence in which the blocks are approximated to reach the required global condition on sparsity. © 2013 IEEE.
Resumo:
DUE TO INCOMPLETE PAPERWORK, ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Cooperative Greedy Pursuit Strategies are considered for approximating a signal partition subjected to a global constraint on sparsity. The approach aims at producing a high quality sparse approximation of the whole signal, using highly coherent redundant dictionaries. The cooperation takes place by ranking the partition units for their sequential stepwise approximation, and is realized by means of i)forward steps for the upgrading of an approximation and/or ii) backward steps for the corresponding downgrading. The advantage of the strategy is illustrated by approximation of music signals using redundant trigonometric dictionaries. In addition to rendering stunning improvements in sparsity with respect to the concomitant trigonometric basis, these dictionaries enable a fast implementation of the approach via the Fast Fourier Transform
Resumo:
A dedicated algorithm for sparse spectral representation of music sound is presented. The goal is to enable the representation of a piece of music signal as a linear superposition of as few spectral components as possible, without affecting the quality of the reproduction. A representation of this nature is said to be sparse. In the present context sparsity is accomplished by greedy selection of the spectral components, from an overcomplete set called a dictionary. The proposed algorithm is tailored to be applied with trigonometric dictionaries. Its distinctive feature being that it avoids the need for the actual construction of the whole dictionary, by implementing the required operations via the fast Fourier transform. The achieved sparsity is theoretically equivalent to that rendered by the orthogonal matching pursuit (OMP) method. The contribution of the proposed dedicated implementation is to extend the applicability of the standard OMP algorithm, by reducing its storage and computational demands. The suitability of the approach for producing sparse spectral representation is illustrated by comparison with the traditional method, in the line of the short time Fourier transform, involving only the corresponding orthonormal trigonometric basis.