34 resultados para granular computing
em Aston University Research Archive
Resumo:
Web document cluster analysis plays an important role in information retrieval by organizing large amounts of documents into a small number of meaningful clusters. Traditional web document clustering is based on the Vector Space Model (VSM), which takes into account only two-level (document and term) knowledge granularity but ignores the bridging paragraph granularity. However, this two-level granularity may lead to unsatisfactory clustering results with “false correlation”. In order to deal with the problem, a Hierarchical Representation Model with Multi-granularity (HRMM), which consists of five-layer representation of data and a twophase clustering process is proposed based on granular computing and article structure theory. To deal with the zero-valued similarity problemresulted from the sparse term-paragraphmatrix, an ontology based strategy and a tolerance-rough-set based strategy are introduced into HRMM. By using granular computing, structural knowledge hidden in documents can be more efficiently and effectively captured in HRMM and thus web document clusters with higher quality can be generated. Extensive experiments show that HRMM, HRMM with tolerancerough-set strategy, and HRMM with ontology all outperform VSM and a representative non VSM-based algorithm, WFP, significantly in terms of the F-Score.
Resumo:
In order to address problems of information overload in digital imagery task domains we have developed an interactive approach to the capture and reuse of image context information. Our framework models different aspects of the relationship between images and domain tasks they support by monitoring the interactive manipulation and annotation of task-relevant imagery. The approach allows us to gauge a measure of a user's intentions as they complete goal-directed image tasks. As users analyze retrieved imagery their interactions are captured and an expert task context is dynamically constructed. This human expertise, proficiency, and knowledge can then be leveraged to support other users in carrying out similar domain tasks. We have applied our techniques to two multimedia retrieval applications for two different image domains, namely the geo-spatial and medical imagery domains. © Springer-Verlag Berlin Heidelberg 2007.
Resumo:
For neural networks with a wide class of weight-priors, it can be shown that in the limit of an infinite number of hidden units the prior over functions tends to a Gaussian process. In this paper analytic forms are derived for the covariance function of the Gaussian processes corresponding to networks with sigmoidal and Gaussian hidden units. This allows predictions to be made efficiently using networks with an infinite number of hidden units, and shows that, somewhat paradoxically, it may be easier to compute with infinite networks than finite ones.
Resumo:
The paper presents a comparison between the different drag models for granular flows developed in the literature and the effect of each one of them on the fast pyrolysis of wood. The process takes place on an 100 g/h lab scale bubbling fluidized bed reactor located at Aston University. FLUENT 6.3 is used as the modeling framework of the fluidized bed hydrodynamics, while the fast pyrolysis of the discrete wood particles is incorporated as an external user defined function (UDF) hooked to FLUENT’s main code structure. Three different drag models for granular flows are compared, namely the Gidaspow, Syamlal O’Brien, and Wen-Yu, already incorporated in FLUENT’s main code, and their impact on particle trajectory, heat transfer, degradation rate, product yields, and char residence time is quantified. The Eulerian approach is used to model the bubbling behavior of the sand, which is treated as a continuum. Biomass reaction kinetics is modeled according to the literature using a two-stage, semiglobal model that takes into account secondary reactions.
Resumo:
Computing circuits composed of noisy logical gates and their ability to represent arbitrary Boolean functions with a given level of error are investigated within a statistical mechanics setting. Existing bounds on their performance are straightforwardly retrieved, generalized, and identified as the corresponding typical-case phase transitions. Results on error rates, function depth, and sensitivity, and their dependence on the gate-type and noise model used are also obtained.
Resumo:
Almost a decade has passed since the objectives and benefits of autonomic computing were stated, yet even the latest system designs and deployments exhibit only limited and isolated elements of autonomic functionality. In previous work, we identified several of the key challenges behind this delay in the adoption of autonomic solutions, and proposed a generic framework for the development of autonomic computing systems that overcomes these challenges. In this article, we describe how existing technologies and standards can be used to realise our autonomic computing framework, and present its implementation as a service-oriented architecture. We show how this implementation employs a combination of automated code generation, model-based and object-oriented development techniques to ensure that the framework can be used to add autonomic capabilities to systems whose characteristics are unknown until runtime. We then use our framework to develop two autonomic solutions for the allocation of server capacity to services of different priorities and variable workloads, thus illustrating its application in the context of a typical data-centre resource management problem.
Resumo:
The success of mainstream computing is largely due to the widespread availability of general-purpose architectures and of generic approaches that can be used to solve real-world problems cost-effectively and across a broad range of application domains. In this chapter, we propose that a similar generic framework is used to make the development of autonomic solutions cost effective, and to establish autonomic computing as a major approach to managing the complexity of today’s large-scale systems and systems of systems. To demonstrate the feasibility of general-purpose autonomic computing, we introduce a generic autonomic computing framework comprising a policy-based autonomic architecture and a novel four-step method for the effective development of self-managing systems. A prototype implementation of the reconfigurable policy engine at the core of our architecture is then used to develop autonomic solutions for case studies from several application domains. Looking into the future, we describe a methodology for the engineering of self-managing systems that extends and generalises our autonomic computing framework further.
Resumo:
The paper introduces a framework for the formal specification of autonomic computing policies, and uses it to define a new type of autonomic computing policy termed a resource-definition policy. We describe the semantics of resource-definition policies, explain how they can be used as a basis for the development of autonomic system of systems, and present a sample data-centre application built using the new policy type.
Resumo:
This thesis describes research on End-User Computing (EUC) in small business in an environment where no Information System (IS) support and expertise are available. The research aims to identify the factors that contribute to EUC Sophistication and understand the extent small firms are capable of developing their own applications. The intention is to assist small firms to adopt EUC, encourage better utilisation of their IT resources and gain the benefits associated with computerisation. The factors examined are derived inductively from previous studies where a model is developed to map these factors with the degree of sophistication associated with IT and EUC. This study attempts to combine the predictive power of quantitative research through surveys with the explanatory power of qualitative research through action-oriented case study. Following critical examination of the literature, a survey of IT Adoption and EUC was conducted. Instruments were then developed to measure EUC and IT Sophistication indexes based on sophistication constructs adapted from previous studies using data from the survey. This is followed by an in-depth action case study involving two small firms to investigate the EUC phenomenon in its real life context. The accumulated findings from these mixed research strategies are used to form the final model of EUC Sophistication in small business. Results of the study suggest both EUC Sophistication and the Presence of EUC in small business are affected by Management Support and Behaviour towards EUC. Additionally EUC Sophistication is also affected by the presence of an EUC Champion. Results are also consistent with respect to the independence between IT Sophistication and EUC Sophistication. The main research contributions include an accumulated knowledge of EUC in small business, the Model of EUC Sophistication, an instrument to measure EUC Sophistication Index for small firms, and a contribution to research methods in IS.
Resumo:
In biaxial compression tests, the stress calculations based on boundary information underestimate the principal stresses leading to a significant overestimation of the shear strength. In direct shear tests, the shear strain becomes highly concentrated in the mid-plane of the sample during the test. Although the stress distribution within the specimen is heterogeneous, the evolution of the stress ratio inside the shear band is similar to that inferred from the boundary force calculations. It is also demonstrated that the dilatancy in the shear band significantly exceeds that implied from the boundary displacements. In simple shear tests, the stresses acting on the wall boundaries do not reflect the internal state of stress but merely provide information about the average mobilised wall friction. It is demonstrated that the results are sensitive to the initial stress state defined by K0 = sh/sv. For all cases, non-coaxiality of the principal stress and strain-rate directions is examined and the corresponding flow rule is identified. Periodic cell simulations have been used to examine biaxial compression for a wide range of initial packing densities. Both constant volume and constant mean stress tests have been simulated. The characteristic behaviour at both the macroscopic and microscopic scales is determined by whether or not the system percolates (enduring connectivity is established in all directions). The transition from non-percolating to percolating systems is characterised by transitional behaviour of internal variables and corresponds to an elastic percolation threshold, which correlates well with the establishment of a mechanical coordination number of ca. 3.0. Strong correlations are found between macroscopic and internal variables at the critical state.
Resumo:
The development of more realistic constitutive models for granular media, such as sand, requires ingredients which take into account the internal micro-mechanical response to deformation. Unfortunately, at present, very little is known about these mechanisms and therefore it is instructive to find out more about the internal nature of granular samples by conducting suitable tests. In contrast to physical testing the method of investigation used in this study employs the Distinct Element Method. This is a computer based, iterative, time-dependent technique that allows the deformation of granular assemblies to be numerically simulated. By making assumptions regarding contact stiffnesses each individual contact force can be measured and by resolution particle centroid forces can be calculated. Then by dividing particle forces by their respective mass, particle centroid velocities and displacements are obtained by numerical integration. The Distinct Element Method is incorporated into a computer program 'Ball'. This program is effectively a numerical apparatus which forms a logical housing for this method and allows data input and output, and also provides testing control. By using this numerical apparatus tests have been carried out on disc assemblies and many new interesting observations regarding the micromechanical behaviour are revealed. In order to relate the observed microscopic mechanisms of deformation to the flow of the granular system two separate approaches have been used. Firstly a constitutive model has been developed which describes the yield function, flow rule and translation rule for regular assemblies of spheres and discs when subjected to coaxial deformation. Secondly statistical analyses have been carried out using data which was extracted from the simulation tests. These analyses define and quantify granular structure and then show how the force and velocity distributions use the structure to produce the corresponding stress and strain-rate tensors.
Resumo:
Adaptability for distributed object-oriented enterprise frameworks is a critical mission for system evolution. Today, building adaptive services is a complex task due to lack of adequate framework support in the distributed computing environment. In this thesis, we propose a Meta Level Component-Based Framework (MELC) which uses distributed computing design patterns as components to develop an adaptable pattern-oriented framework for distributed computing applications. We describe our novel approach of combining a meta architecture with a pattern-oriented framework, resulting in an adaptable framework which provides a mechanism to facilitate system evolution. The critical nature of distributed technologies requires frameworks to be adaptable. Our framework employs a meta architecture. It supports dynamic adaptation of feasible design decisions in the framework design space by specifying and coordinating meta-objects that represent various aspects within the distributed environment. The meta architecture in MELC framework can provide the adaptability for system evolution. This approach resolves the problem of dynamic adaptation in the framework, which is encountered in most distributed applications. The concept of using a meta architecture to produce an adaptable pattern-oriented framework for distributed computing applications is new and has not previously been explored in research. As the framework is adaptable, the proposed architecture of the pattern-oriented framework has the abilities to dynamically adapt new design patterns to address technical system issues in the domain of distributed computing and they can be woven together to shape the framework in future. We show how MELC can be used effectively to enable dynamic component integration and to separate system functionality from business functionality. We demonstrate how MELC provides an adaptable and dynamic run time environment using our system configuration and management utility. We also highlight how MELC will impose significant adaptability in system evolution through a prototype E-Bookshop application to assemble its business functions with distributed computing components at the meta level in MELC architecture. Our performance tests show that MELC does not entail prohibitive performance tradeoffs. The work to develop the MELC framework for distributed computing applications has emerged as a promising way to meet current and future challenges in the distributed environment.