8 resultados para grain boundary mobility

em Aston University Research Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A general investigation was performed, in an industrial environment, of the major types of defect specific to investment castings in steel. As a result of this work three types of metallurgical defect were selected for further study. In the first of these, defects in austenitic stainless steel castings were found to result from deoxidation by-products. As a result of metallographic investigation and the statistical analysis of experimental data, evidence was found to support the hypothesis that the other two classes of defects - in martensite stainless and low alloy steels -both resulted from internal or grain boundary oxidation of the chromium alloy constituent This was often found to be followed by reaction between the metal oxides and the ceramic mould material. On the basis of this study, proposals are made for a more fundamental investigation of the mechanisms involved and interim suggestions are given for methods of ameliorating the effect in an industrial situation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The damping behaviour of the cold chamber pressure-die-casting alloy: M3, ZA8, ZA27, ZM11, Cosmal, Supercosmal and newly developed ZA27H1 and ZA27H2 was investigated at room temperature and elevated temperatures of up to 90 degrees C. The damping properties of the alloys were established at all temperatures. Formulas were established to predict damping properties of each alloy at any given temperature. The prediction formulae were found to be very accurate. All of the experimental alloys were heterogenous with varying microstructure and grain size; this was the major contribution and dominated the damping properties of the alloys. Super cosmal and ZA27 possessed the highest tensile strength but ZA27H1, ZA27H2 and ZM11 showed the highest damping properties. The relationship between microstructure and damping capacity of all alloys was also examined using back-scattered electron on the SEM. Further more detailed examinations of the microstructures of alloys ZM11, Cosmal and Supercosmal were carried out on the transmission electron microscope in order to establish the phases present in all alloys. These helped to obtain the mechanism of damping in the experimental alloys. The main damping mechanism in most of the experimental alloys was due to grain-boundary-sliding. Micro structural examinations also revealed the absence of -phase in the Cosmal and Supercosmal. This was thought to be due to a change in solid solubility of the alloys, which could have been caused by the addition of Si.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fatigue crack growth in high strength aluminium alloy 7150 commercial plate material has been studied in both laboratory air and acidified aqueous salt solution. The aggressive aqueous environment enhanced fatigue crack growth rates by up to an order in magnitude compared to laboratory air. The enhancement in fatigue crack growth rate was accompanied by evidence of embrittlement in the crack path, involving both brittle intergranular and transgranular failure modes. Both the enhancement of fatigue crack growth rates and the extent of intergranular growth modes are dependent on cyclic frequency which, along with the absence of a similar frequency effect in a spray-formed version of the material with a significantly different grain structure, supports a mechanism of grain boundary hydrogen diffusion for intergranular corrosion fatigue crack growth. The convergence of corrosion fatigue crack growth rates at high ΔK in both spray-formed and conventional plate materials coincides with the operation of identical transgranular corrosion fatigue modes dependent on strain-controlled hydrogen diffusion ahead of the crack tip. © 1997 Acta Metallurgica Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tensile, crack opening displacement (COD), blunt notch, and Charpy impact tests were used to investigate cleavage initiation in the intercritically reheated coarse-grained heat-affected zone (IC CG HAZ) of three steels. The steels were chosen to provide different distributions and morphologies of MA (high-carbon martensite with some retained austenite) particles within the IC CG HAZ structure. Observation of minimum impact toughness values for the IC CG HAZ was found to be associated with a particular microstructure containing a near-connected grain boundary network of blocky MA particles, the MA particles being significantly harder than the internal grain microstructure. The initiation mechanism for this structure was determined to be from a combination of an overlap of residual transformational induced stress fields, due to the formation of the MA particles, between two closely spaced particles and stress concentration effects resulting from debonding of the particles. © 1994 The Minerals, Metals and Materials Society, and ASM International.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High strength low alloy steels have been shown to be adversely affected by the existence of regions of poor impact toughness within the heat affected zone (HAZ) produced during multipass welding. One of these regions is the intercritically reheated coarse grained HAZ or intercritical zone. Since this region is generally narrow and discontinuous, of the order of 0.5 mm in width, weld simulators are often employed to produce a larger volume of uniform microstructure suitable for toughness assessment. The steel usedfor this study was a commercial quenched and tempered steel of 450 MN m -2 yield strength. Specimen blanks were subjected to a simulated welding cycle to produce a coarse grained structure of upper bainite during the first thermal cycle, followed by a second thermal cycle where the peak temperature T p2 was controlled. Charpy tests carried out for T p2 values in the range 650-850°C showed low toughness for T p2 values between 760 and 790°C, in the intercritical regime. Microstructural investigation of the development of grain boundary martensite-retained austenite (MA) phase has been coupled with image analysis to measure the volume fraction of MAformed. Most of the MA constituent appears at the prior austenite grain boundaries during intercritical heating, resulting in a 'necklace' appearance. For values of T p2 greater than 790°C the necklace appearance is lost and the second phase areas are observed throughout the structure. Concurrent with this is the development of the fine grained, predominantly ferritic structure that is associated with the improvement in toughness. At this stage the microstructure is transforming from the intercritical regime structure to the supercritically reheated coarse grained HAZ structure. The toughness improvement occurs even though the MA phase is still present, suggesting that the embrittlement is associated with the presence of a connected grain boundary network of the MA phase. The nature of the second phase particles can be controlled by the cooling rate during the second cycle and variesfrom MA phase at high cooling rates to a pearlitic structure at low cooling rates. The lowest toughness of the intercritical zone is observed only when MA phase is present. The reason suggested for this is that only the MA particles debond readily, a number of debonded particles in close proximity providing sufficient stress concentration to initiate local cleavage. © 1993 The Institute of Materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fifty seven short fatigue cracks in the Ni-base superalloy AP1 have been examined, to ascertain how the paths taken by growing fatigue cracks are determined. The observations were made on the surface of a smooth specimen, and on the exposed fracture surfaces. Three dimensional reconstructions of the vulnerable microstructures in the vicinity of the cracks were produced. Initiation occurred in mode II, with the lines of intersection of the initiation sites with the specimen top surface orientated at approximately 45° to the tensile axis. These initiation sites developed in slip bands which crossed a large grain and at least one other grain via a grain boundary with a low angle of misorientation. 'River markings' on one of the initiation facets, indicated that the crack first opened from the top centre of the initiation grain. Subsequent to initiation, the growth paths of these cracks are related to the misorientations of the grains and the progress of the crack front.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A thermodynamic analysis which is capable of estimating the austenite/ferrite equilibria in duplex stainless steels has been carried out using the sublattice thermodynamic model. The partitioning of alloying elements between the austenite and ferrite phases has been calculated as a function of temperature. The results showed that chromium partitioning was not influenced significantly by the temperature. The molybdenum, on the other hand, was found to partition preferentially into ferrite phase as the temperature decreases. A strong partitioning of nickel into the austenite was observed to decrease gradually with increasing temperature. Among the alloying elements, average nitrogen concentration was found to have the most profound effect on the phase balance and the partitioning of nitrogen into the austenite. The partitioning coefficient of nitrogen (the ratio of the mole fraction of nitrogen in the austenite to that in the ferrite) was found to be as high as 7.0 around 1300 K. Consequently, the volume fraction of austenite was influenced by relatively small additions of nitrogen. The results are compared with the experimentally observed data in a duplex stainless steel weld metal in conjunction with the solid state δ → δ + γ phase transformation. Particular attention was given to the morphological instability of grain boundary austenite allotriomorphs. A compariso between the experimental results and calculations indicated that the instability associated with irregular austenite perturbations results from the high degree of undercooling. The results suggest that the model can be used successfully to understand the development of the microstructure in duplex stainless steel weld metals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grain size effects on the physical properties of polycrystalline ferroelectrics have been extensively studied for decades; however there are still major controversies regarding the dependence of the piezoelectric and ferroelectric properties on the grain size. Dense BaTiO3 ceramics with different grain sizes were fabricated by either conventional sintering or spark plasma sintering using micro- and nano-sized powders. The results show that the grain size effect on the dielectric permittivity is nearly independent of the sintering method and starting powder used. A peak in the permittivity is observed in all the ceramics with a grain size near 1μm and can be attributed to a maximum domain wall density and mobility. The piezoelectric coefficient d33 and remnant polarization Pr show diverse grain size effects depending on the particle size of the starting powder and sintering temperature. This suggests that besides domain wall density, other factors such as back fields and point defects, which influence the domain wall mobility, could be responsible for the different grain size dependence observed in the dielectric and piezoelectric/ferroelectric properties. In cases where point defects are not the dominant contributor, the piezoelectric constant d33 and the remnant polarization Pr increase with increasing grain size.