23 resultados para goal based
em Aston University Research Archive
Resumo:
Self-adaptation is emerging as an increasingly important capability for many applications, particularly those deployed in dynamically changing environments, such as ecosystem monitoring and disaster management. One key challenge posed by Dynamically Adaptive Systems (DASs) is the need to handle changes to the requirements and corresponding behavior of a DAS in response to varying environmental conditions. Berry et al. previously identified four levels of RE that should be performed for a DAS. In this paper, we propose the Levels of RE for Modeling that reify the original levels to describe RE modeling work done by DAS developers. Specifically, we identify four types of developers: the system developer, the adaptation scenario developer, the adaptation infrastructure developer, and the DAS research community. Each level corresponds to the work of a different type of developer to construct goal model(s) specifying their requirements. We then leverage the Levels of RE for Modeling to propose two complementary processes for performing RE for a DAS. We describe our experiences with applying this approach to GridStix, an adaptive flood warning system, deployed to monitor the River Ribble in Yorkshire, England.
Resumo:
Dynamically adaptive systems (DASs) are intended to monitor the execution environment and then dynamically adapt their behavior in response to changing environmental conditions. The uncertainty of the execution environment is a major motivation for dynamic adaptation; it is impossible to know at development time all of the possible combinations of environmental conditions that will be encountered. To date, the work performed in requirements engineering for a DAS includes requirements monitoring and reasoning about the correctness of adaptations, where the DAS requirements are assumed to exist. This paper introduces a goal-based modeling approach to develop the requirements for a DAS, while explicitly factoring uncertainty into the process and resulting requirements. We introduce a variation of threat modeling to identify sources of uncertainty and demonstrate how the RELAX specification language can be used to specify more flexible requirements within a goal model to handle the uncertainty. © 2009 Springer Berlin Heidelberg.
Resumo:
The behaviour of self adaptive systems can be emergent, which means that the system’s behaviour may be seen as unexpected by its customers and its developers. Therefore, a self-adaptive system needs to garner confidence in its customers and it also needs to resolve any surprise on the part of the developer during testing and maintenance. We believe that these two functions can only be achieved if a self-adaptive system is also capable of self-explanation. We argue a self-adaptive system’s behaviour needs to be explained in terms of satisfaction of its requirements. Since self-adaptive system requirements may themselves be emergent, we propose the use of goal-based requirements models at runtime to offer self-explanation of how a system is meeting its requirements. We demonstrate the analysis of run-time requirements models to yield a self-explanation codified in a domain specific language, and discuss possible future work.
Resumo:
The behaviour of self adaptive systems can be emergent. The difficulty in predicting the system's behaviour means that there is scope for the system to surprise its customers and its developers. Because its behaviour is emergent, a self-adaptive system needs to garner confidence in its customers and it needs to resolve any surprise on the part of the developer during testing and mainteinance. We believe that these two functions can only be achieved if a self-adaptive system is also capable of self-explanation. We argue a self-adaptive system's behaviour needs to be explained in terms of satisfaction of its requirements. Since self-adaptive system requirements may themselves be emergent, a means needs to be found to explain the current behaviour of the system and the reasons that brought that behaviour about. We propose the use of goal-based models during runtime to offer self-explanation of how a system is meeting its requirements, and why the means of meeting these were chosen. We discuss the results of early experiments in self-explanation, and set out future work. © 2012 C.E.S.A.M.E.S.
Resumo:
Goal-based learning (GBL) has long been used for teaching (Schank and Kass, 1996) and training (Collins, 1994), and game playing is also very widely used (Fudenberg and Levine, 1998). When both are used together it can become a winning combination that focuses students? attention, dismisses precepts about a subject, lowers barriers to preferred learning-styles and open minds to new tools, ideas and concepts. The combination can be achieved using basic traditional physical props (e.g. pens and paper) or advanced internet technology. This report briefly describes an offline and online approach and then summarises some of the main benefits to be gained from combining games and goals to get students going in the right pedagogical direction.
Resumo:
The goal of evidence-based medicine is to uniformly apply evidence gained from scientific research to aspects of clinical practice. In order to achieve this goal, new applications that integrate increasingly disparate health care information resources are required. Access to and provision of evidence must be seamlessly integrated with existing clinical workflow and evidence should be made available where it is most often required - at the point of care. In this paper we address these requirements and outline a concept-based framework that captures the context of a current patient-physician encounter by combining disease and patient-specific information into a logical query mechanism for retrieving relevant evidence from the Cochrane Library. Returned documents are organized by automatically extracting concepts from the evidence-based query to create meaningful clusters of documents which are presented in a manner appropriate for point of care support. The framework is currently being implemented as a prototype software agent that operates within the larger context of a multi-agent application for supporting workflow management of emergency pediatric asthma exacerbations. © 2008 Springer-Verlag Berlin Heidelberg.
Resumo:
From a manufacturing perspective, the efficiency of manufacturing operations (such as process planning and production scheduling) are the key element for enhancing manufacturing competence. Process planning and production scheduling functions have been traditionally treated as two separate activities, and have resulted in a range of inefficiencies. These include infeasible process plans, non-available/overloaded resources, high production costs, long production lead times, and so on. Above all, it is unlikely that the dynamic changes can be efficiently dealt with. Despite much research has been conducted to integrate process planning and production scheduling to generate optimised solutions to improve manufacturing efficiency, there is still a gap to achieve the competence required for the current global competitive market. In this research, the concept of multi-agent system (MAS) is adopted as a means to address the aforementioned gap. A MAS consists of a collection of intelligent autonomous agents able to solve complex problems. These agents possess their individual objectives and interact with each other to fulfil the global goal. This paper describes a novel use of an autonomous agent system to facilitate the integration of process planning and production scheduling functions to cope with unpredictable demands, in terms of uncertainties in product mix and demand pattern. The novelty lies with the currency-based iterative agent bidding mechanism to allow process planning and production scheduling options to be evaluated simultaneously, so as to search for an optimised, cost-effective solution. This agent based system aims to achieve manufacturing competence by means of enhancing the flexibility and agility of manufacturing enterprises.
Resumo:
The definitive goal of this research is to develop protein-based scaffolds for use in soft tissue regeneration, particularly in the field of dermal healing. The premise of this investigation was to characterize the mechanical properties of gelatin cross-linked with microbial transglutaminase (mTGase) and to investigate the cytocompatibility of mTGase cross-linked gelatin. Dynamic rheological analysis revealed a significant increase in the storage modulus and thermal stability of gelatin after cross-linking with mTGase. Static, unconfined compression tests showed an increase in Young's modulus of gelatin gels after mTGase cross-linking. A comparable increase in gel strength was observed with 0.03% mTGase and 0.25% glutaraldehyde cross-linked gelatin gels. In vitro studies using 3T3 fibroblasts indicated cytotoxicity at a concentration of 0.05% mTGase after 72 h. However, no significant inhibition of cell proliferation was seen with cells grown on lower concentrations of mTGase cross-linked gelatin substrates. The mechanical improvement and cytocompatibility of mTGase cross-linked gelatin suggests mTGase has potential for use in stabilizing gelatin gels for tissue-engineering applications.
Resumo:
This thesis describes the development and use of a goal programming methodology for the evaluation of public housjng strategies in Mexico City, The methodology responds to the need to incorporate the location, size and densities of housing projects on the one hand, and "external" constraints such as the ability of low income families to pay for housing, and the amounts of capital and land available, on the other. The provision of low cost housing by public housing agencies in Mexico City is becoming increasingly difficult because there are so many constraints to be met and overcome, the most important of which is the ability of families to pay for housing. Other important limiting factors are the availability of capital and of land plots of the right size in desired locations. The location of public housing projects is significant because it determines the cost and pattern of work trips, which in a metropolitan area such as Mexico City are of considerable importance to both planners and potential. house owners. In addition, since the price of land is closely related to its location, the last factor is also significant in determining the price of the total housing package. Consequently there is a major trade-off between a housing strategy based on the provision of housing at locations close to employment, and the opposite one based on the provjsion of housjng at locations where employment accessibility is poorer but housing can be provided at a lower price. The goal programming evaluation methodology presented in this thesis was developed to aid housing planners to evaluate housing strategies which incorporate the issues raised above,
Resumo:
Titanium nitride (TiN) thin films are coated on HT-9 and MA957 fuel cladding tubes and bars to explore their mechanical strength, thermal stability, diffusion barrier properties, and thermal conductivity properties. The ultimate goal is to implement TiN as an effective diffusion barrier to prevent the inter-diffusion between the nuclear fuel and the cladding material, and thus lead to a longer lifetime of the cladding tubes. Mechanical tests including hardness and scratch tests for the samples before and after thermal cycle tests show that the films have a high hardness of 28GPa and excellent adhesion properties despite the thermal treatment. Thermal conductivity measurements demonstrate that the thin TiN films have very minimal impact on the overall thermal conductivity of the MA957 and HT-9 substrates, i.e., the thermal conductivity of the uncoated HT-9 and MA957 substrates was 26.25 and 28.44 W m-1 K-1, and that of the coated ones was 26.21 and 28.38W m-1 K-1, respectively. A preliminary Ce diffusion test on the couple of Ce/TiN/HT-9 suggests that TiN has excellent material compatibility and good diffusion barrier properties.
Resumo:
Context/Motivation - Different modeling techniques have been used to model requirements and decision-making of self-adaptive systems (SASs). Specifically, goal models have been prolific in supporting decision-making depending on partial and total fulfilment of functional (goals) and non-functional requirements (softgoals). Different goalrealization strategies can have different effects on softgoals which are specified with weighted contribution-links. The final decision about what strategy to use is based, among other reasons, on a utility function that takes into account the weighted sum of the different effects on softgoals. Questions/Problems - One of the main challenges about decisionmaking in self-adaptive systems is to deal with uncertainty during runtime. New techniques are needed to systematically revise the current model when empirical evidence becomes available from the deployment. Principal ideas/results - In this paper we enrich the decision-making supported by goal models by using Dynamic Decision Networks (DDNs). Goal realization strategies and their impact on softgoals have a correspondence with decision alternatives and conditional probabilities and expected utilities in the DDNs respectively. Our novel approach allows the specification of preferences over the softgoals and supports reasoning about partial satisfaction of softgoals using probabilities. We report results of the application of the approach on two different cases. Our early results suggest the decision-making process of SASs can be improved by using DDNs. © 2013 Springer-Verlag.
Resumo:
Continuing advances in digital image capture and storage are resulting in a proliferation of imagery and associated problems of information overload in image domains. In this work we present a framework that supports image management using an interactive approach that captures and reuses task-based contextual information. Our framework models the relationship between images and domain tasks they support by monitoring the interactive manipulation and annotation of task-relevant imagery. During image analysis, interactions are captured and a task context is dynamically constructed so that human expertise, proficiency and knowledge can be leveraged to support other users in carrying out similar domain tasks using case-based reasoning techniques. In this article we present our framework for capturing task context and describe how we have implemented the framework as two image retrieval applications in the geo-spatial and medical domains. We present an evaluation that tests the efficiency of our algorithms for retrieving image context information and the effectiveness of the framework for carrying out goal-directed image tasks. © 2010 Springer Science+Business Media, LLC.
Resumo:
The paper proposes an ISE (Information goal, Search strategy, Evaluation threshold) user classification model based on Information Foraging Theory for understanding user interaction with content-based image retrieval (CBIR). The proposed model is verified by a multiple linear regression analysis based on 50 users' interaction features collected from a task-based user study of interactive CBIR systems. To our best knowledge, this is the first principled user classification model in CBIR verified by a formal and systematic qualitative analysis of extensive user interaction data. Copyright 2010 ACM.
Resumo:
This paper presents a goal programming model to optimise the deployment of pyrolysis plants in Punjab, India. Punjab has an abundance of waste straw and pyrolysis can convert this waste into alternative bio-fuels, which will facilitate the provision of valuable energy services and reduce open field burning. A goal programming model is outlined and demonstrated in two case study applications: small scale operations in villages and large scale deployment across Punjab's districts. To design the supply chain, optimal decisions for location, size and number of plants, downstream energy applications and feedstocks processed are simultaneously made based on stakeholder requirements for capital cost, payback period and production cost of bio-oil and electricity. The model comprises quantitative data obtained from primary research and qualitative data gathered from farmers and potential investors. The Punjab district of Fatehgarh Sahib is found to be the ideal location to initially utilise pyrolysis technology. We conclude that goal programming is an improved method over more conventional methods used in the literature for project planning in the field of bio-energy. The model and findings developed from this study will be particularly valuable to investors, plant developers and municipalities interested in waste to energy in India and elsewhere. © 2014 Elsevier Ltd. All rights reserved.