11 resultados para genome wide complex trait analysis
em Aston University Research Archive
Resumo:
In a genome-wide RNA-mediated interference screen for genes required in membrane traffic - including endocytic uptake, recycling from endosomes to the plasma membrane, and secretion - we identified 168 candidate endocytosis regulators and 100 candidate secretion regulators. Many of these candidates are highly conserved among metazoans but have not been previously implicated in these processes. Among the positives from the screen, we identified PAR-3, PAR-6, PKC-3 and CDC-42, proteins that are well known for their importance in the generation of embryonic and epithelial-cell polarity. Further analysis showed that endocytic transport in Caenorhabditis elegans coelomocytes and human HeLa cells was also compromised after perturbation of CDC-42/Cdc42 or PAR-6/Par6 function, indicating a general requirement for these proteins in regulating endocytic traffic. Consistent with these results, we found that tagged CDC-42/Cdc42 is enriched on recycling endosomes in C. elegans and mammalian cells, suggesting a direct function in the regulation of transport.
Resumo:
Our sleep timing preference, or chronotype, is a manifestation of our internal biological clock. Variation in chronotype has been linked to sleep disorders, cognitive and physical performance, and chronic disease. Here we perform a genome-wide association study of self-reported chronotype within the UK Biobank cohort (n=100,420). We identify 12 new genetic loci that implicate known components of the circadian clock machinery and point to previously unstudied genetic variants and candidate genes that might modulate core circadian rhythms or light-sensing pathways. Pathway analyses highlight central nervous and ocular systems and fear-response-related processes. Genetic correlation analysis suggests chronotype shares underlying genetic pathways with schizophrenia, educational attainment and possibly BMI. Further, Mendelian randomization suggests that evening chronotype relates to higher educational attainment. These results not only expand our knowledge of the circadian system in humans but also expose the influence of circadian characteristics over human health and life-history variables such as educational attainment.
Resumo:
Reading and language abilities are heritable traits that are likely to share some genetic influences with each other. To identify pleiotropic genetic variants affecting these traits, we first performed a genome-wide association scan (GWAS) meta-analysis using three richly characterized datasets comprising individuals with histories of reading or language problems, and their siblings. GWAS was performed in a total of 1862 participants using the first principal component computed from several quantitative measures of reading- and language-related abilities, both before and after adjustment for performance IQ. We identified novel suggestive associations at the SNPs rs59197085 and rs5995177 (uncorrected P≈10 for each SNP), located respectively at the CCDC136/FLNC and RBFOX2 genes. Each of these SNPs then showed evidence for effects across multiple reading and language traits in univariate association testing against the individual traits. FLNC encodes a structural protein involved in cytoskeleton remodelling, while RBFOX2 is an important regulator of alternative splicing in neurons. The CCDC136/FLNC locus showed association with a comparable reading/language measure in an independent sample of 6434 participants from the general population, although involving distinct alleles of the associated SNP. Our datasets will form an important part of on-going international efforts to identify genes contributing to reading and language skills. Genome-wide association scan meta-analysis for reading and language ability. © 2014 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Resumo:
Approximately 90% of humans are right-handed. Handedness is a heritable trait, yet the genetic basis is not well understood. Here we report a genome-wide association study for a quantitative measure of relative hand skill in individuals with dyslexia [reading disability (RD)]. The most highly associated marker, rs11855415 (P = 4.7 × 10-7), is located within PCSK6. Two independent cohorts with RD show the same trend, with the minor allele conferring greater relative right-hand skill. Meta-analysis of all three RD samples is genome-wide significant (n = 744, P = 2.0 × 10-8). Conversely, in the general population (n = 2666), we observe a trend towards reduced laterality of hand skill for the minor allele (P = 0.0020). These results provide molecular evidence that cerebral asymmetry and dyslexia are linked. Furthermore, PCSK6 is a protease that cleaves the left–right axis determining protein NODAL. Functional studies of PCSK6 promise insights into mechanisms underlying cerebral lateralization and dyslexia.
Resumo:
Humans display structural and functional asymmetries in brain organization, strikingly with respect to language and handedness. The molecular basis of these asymmetries is unknown. We report a genome-wide association study meta-analysis for a quantitative measure of relative hand skill in individuals with dyslexia [reading disability (RD)] (n = 728). The most strongly associated variant, rs7182874 (P = 8.68×10-9), is located in PCSK6, further supporting an association we previously reported. We also confirmed the specificity of this association in individuals with RD; the same locus was not associated with relative hand skill in a general population cohort (n = 2,666). As PCSK6 is known to regulate NODAL in the development of left/right (LR) asymmetry in mice, we developed a novel approach to GWAS pathway analysis, using gene-set enrichment to test for an over-representation of highly associated variants within the orthologs of genes whose disruption in mice yields LR asymmetry phenotypes. Four out of 15 LR asymmetry phenotypes showed an over-representation (FDR≤5%). We replicated three of these phenotypes; situs inversus, heterotaxia, and double outlet right ventricle, in the general population cohort (FDR≤5%). Our findings lead us to propose that handedness is a polygenic trait controlled in part by the molecular mechanisms that establish LR body asymmetry early in development. © 2013 Brandler et al.
Resumo:
We recently reported the association of the PCSK6 gene with handedness through a quantitative genome-wide association study (GWAS; P < 0.5 × 10(-8)) for a relative hand skill measure in individuals with dyslexia. PCSK6 activates Nodal, a morphogen involved in regulating left-right body axis determination. Therefore, the GWAS data suggest that the biology underlying the patterning of structural asymmetries may also contribute to behavioural laterality, e.g. handedness. The association is further supported by an independent study reporting a variable number tandem repeat (VNTR) within the same PCSK6 locus to be associated with degree of handedness in a general population cohort. Here, we have conducted a functional analysis of the PCSK6 locus combining further genetic analysis, in silico predictions and molecular assays. We have shown that the previous GWAS signal was not tagging a VNTR effect, suggesting that the two markers have independent effects. We demonstrated experimentally that one of the top GWAS-associated markers, rs11855145, directly alters the binding site for a nuclear factor. Furthermore, we have shown that the predicted regulatory region adjacent to rs11855415 acts as a bidirectional promoter controlling the expression of novel RNA transcripts. These include both an antisense long non-coding RNA (lncRNA) and a short PCSK6 isoform predicted to be coding. This is the first molecular characterization of a handedness-associated locus that supports the role of common variants in non-coding sequences in influencing complex phenotypes through gene expression regulation.
Resumo:
The mechanisms of signal transduction and vesicular transport have traditionally been studied in isolation, but recent studies make it clear that the two processes are inextricably linked. A new genome-wide analysis of human kinases using RNA interference shows an unexpected depth and complexity to the interactions between these processes.
Resumo:
Aim: Sex chromosome aneuploidies increase the risk of spoken or written language disorders but individuals with specific language impairment (SLI) or dyslexia do not routinely undergo cytogenetic analysis. We assess the frequency of sex chromosome aneuploidies in individuals with language impairment or dyslexia. Method: Genome-wide single nucleotide polymorphism genotyping was performed in three sample sets: a clinical cohort of individuals with speech and language deficits (87 probands: 61 males, 26 females; age range 4 to 23 years), a replication cohort of individuals with SLI, from both clinical and epidemiological samples (209 probands: 139 males, 70 females; age range 4 to 17 years), and a set of individuals with dyslexia (314 probands: 224 males, 90 females; age range 7 to 18 years). Results: In the clinical language-impaired cohort, three abnormal karyotypic results were identified in probands (proband yield 3.4%). In the SLI replication cohort, six abnormalities were identified providing a consistent proband yield (2.9%). In the sample of individuals with dyslexia, two sex chromosome aneuploidies were found giving a lower proband yield of 0.6%. In total, two XYY, four XXY (Klinefelter syndrome), three XXX, one XO (Turner syndrome), and one unresolved karyotype were identified. Interpretation: The frequency of sex chromosome aneuploidies within each of the three cohorts was increased over the expected population frequency (approximately 0.25%) suggesting that genetic testing may prove worthwhile for individuals with language and literacy problems and normal non-verbal IQ. Early detection of these aneuploidies can provide information and direct the appropriate management for individuals. © 2013 The Authors. Developmental Medicine & Child Neurology published by John Wiley & Sons Ltd on behalf of Mac Keith Press.
Resumo:
Background—The molecular mechanisms underlying similarities and differences between physiological and pathological left ventricular hypertrophy (LVH) are of intense interest. Most previous work involved targeted analysis of individual signaling pathways or screening of transcriptomic profiles. We developed a network biology approach using genomic and proteomic data to study the molecular patterns that distinguish pathological and physiological LVH. Methods and Results—A network-based analysis using graph theory methods was undertaken on 127 genome-wide expression arrays of in vivo murine LVH. This revealed phenotype-specific pathological and physiological gene coexpression networks. Despite >1650 common genes in the 2 networks, network structure is significantly different. This is largely because of rewiring of genes that are differentially coexpressed in the 2 networks; this novel concept of differential wiring was further validated experimentally. Functional analysis of the rewired network revealed several distinct cellular pathways and gene sets. Deeper exploration was undertaken by targeted proteomic analysis of mitochondrial, myofilament, and extracellular subproteomes in pathological LVH. A notable finding was that mRNA–protein correlation was greater at the cellular pathway level than for individual loci. Conclusions—This first combined gene network and proteomic analysis of LVH reveals novel insights into the integrated pathomechanisms that distinguish pathological versus physiological phenotypes. In particular, we identify differential gene wiring as a major distinguishing feature of these phenotypes. This approach provides a platform for the investigation of potentially novel pathways in LVH and offers a freely accessible protocol (http://sites.google.com/site/cardionetworks) for similar analyses in other cardiovascular diseases.
Resumo:
Background: The methylotrophic, Crabtree-negative yeast Pichia pastoris is widely used as a heterologous protein production host. Strong inducible promoters derived from methanol utilization genes or constitutive glycolytic promoters are typically used to drive gene expression. Notably, genes involved in methanol utilization are not only repressed by the presence of glucose, but also by glycerol. This unusual regulatory behavior prompted us to study the regulation of carbon substrate utilization in different bioprocess conditions on a genome wide scale. Results: We performed microarray analysis on the total mRNA population as well as mRNA that had been fractionated according to ribosome occupancy. Translationally quiescent mRNAs were defined as being associated with single ribosomes (monosomes) and highly-translated mRNAs with multiple ribosomes (polysomes). We found that despite their lower growth rates, global translation was most active in methanol-grown P. pastoris cells, followed by excess glycerol- or glucose-grown cells. Transcript-specific translational responses were found to be minimal, while extensive transcriptional regulation was observed for cells grown on different carbon sources. Due to their respiratory metabolism, cells grown in excess glucose or glycerol had very similar expression profiles. Genes subject to glucose repression were mainly involved in the metabolism of alternative carbon sources including the control of glycerol uptake and metabolism. Peroxisomal and methanol utilization genes were confirmed to be subject to carbon substrate repression in excess glucose or glycerol, but were found to be strongly de-repressed in limiting glucose-conditions (as are often applied in fed batch cultivations) in addition to induction by methanol. Conclusions: P. pastoris cells grown in excess glycerol or glucose have similar transcript profiles in contrast to S. cerevisiae cells, in which the transcriptional response to these carbon sources is very different. The main response to different growth conditions in P. pastoris is transcriptional; translational regulation was not transcript-specific. The high proportion of mRNAs associated with polysomes in methanol-grown cells is a major finding of this study; it reveals that high productivity during methanol induction is directly linked to the growth condition and not only to promoter strength.
Resumo:
Background - Specific language impairment (SLI) is a common neurodevelopmental disorder, observed in 5–10 % of children. Family and twin studies suggest a strong genetic component, but relatively few candidate genes have been reported to date. A recent genome-wide association study (GWAS) described the first statistically significant association specifically for a SLI cohort between a missense variant (rs4280164) in the NOP9 gene and language-related phenotypes under a parent-of-origin model. Replications of these findings are particularly challenging because the availability of parental DNA is required. Methods - We used two independent family-based cohorts characterised with reading- and language-related traits: a longitudinal cohort (n = 106 informative families) including children with language and reading difficulties and a nuclear family cohort (n = 264 families) selected for dyslexia. Results - We observed association with language-related measures when modelling for parent-of-origin effects at the NOP9 locus in both cohorts: minimum P = 0.001 for phonological awareness with a paternal effect in the first cohort and minimum P = 0.0004 for irregular word reading with a maternal effect in the second cohort. Allelic and parental trends were not consistent when compared to the original study. Conclusions - A parent-of-origin effect at this locus was detected in both cohorts, albeit with different trends. These findings contribute in interpreting the original GWAS report and support further investigations of the NOP9 locus and its role in language-related traits. A systematic evaluation of parent-of-origin effects in genetic association studies has the potential to reveal novel mechanisms underlying complex traits.