3 resultados para genetic testing

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aim: Sex chromosome aneuploidies increase the risk of spoken or written language disorders but individuals with specific language impairment (SLI) or dyslexia do not routinely undergo cytogenetic analysis. We assess the frequency of sex chromosome aneuploidies in individuals with language impairment or dyslexia. Method: Genome-wide single nucleotide polymorphism genotyping was performed in three sample sets: a clinical cohort of individuals with speech and language deficits (87 probands: 61 males, 26 females; age range 4 to 23 years), a replication cohort of individuals with SLI, from both clinical and epidemiological samples (209 probands: 139 males, 70 females; age range 4 to 17 years), and a set of individuals with dyslexia (314 probands: 224 males, 90 females; age range 7 to 18 years). Results: In the clinical language-impaired cohort, three abnormal karyotypic results were identified in probands (proband yield 3.4%). In the SLI replication cohort, six abnormalities were identified providing a consistent proband yield (2.9%). In the sample of individuals with dyslexia, two sex chromosome aneuploidies were found giving a lower proband yield of 0.6%. In total, two XYY, four XXY (Klinefelter syndrome), three XXX, one XO (Turner syndrome), and one unresolved karyotype were identified. Interpretation: The frequency of sex chromosome aneuploidies within each of the three cohorts was increased over the expected population frequency (approximately 0.25%) suggesting that genetic testing may prove worthwhile for individuals with language and literacy problems and normal non-verbal IQ. Early detection of these aneuploidies can provide information and direct the appropriate management for individuals. © 2013 The Authors. Developmental Medicine & Child Neurology published by John Wiley & Sons Ltd on behalf of Mac Keith Press.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Importance of the field: Tacrolimus is the most commonly used immunosuppressive agent following solid-organ transplantation in children. Its clinical use, however, is complicated by side effects (mainly nephrotoxicity), narrow therapeutic index and pharmacokinetic variability which can result in an increased risk of treatment failure or toxicity. Studies examining interindividual differences in the expression of the ABCB1 (ATP-binding cassette, subfamily B, member 1) gene (which encodes the drug transporter, P-gp) and its genetic polymorphisms have attempted to elucidate variations in tacrolimus response and disposition in children. Areas covered in this review: This review explores pharmacogenetic knowledge developed over the last decade regarding the impact of ABCB1 polymorphisms on tacrolimus toxicity and dosage requirements in children. What the reader will gain: A better understanding of the role of ABCB1 genetic polymorphisms (and corresponding haplotypes) and ABCB1 expression levels in various tissues and organs on tacrolimus outcomes in children with liver transplant. Take home message: Pharmacogenetics offers significant potential for optimising tacrolimus use. ABCB1 donor genotypes and ABCB1 expression level in the intestine and leukocytes may be useful in dosage selection. Large prospective studies are, however, required to further explore the potential of genetic testing in identifying children who are at risk of toxicity and to better individualise tacrolimus therapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aims: The Tuberous Sclerosis 2000 Study is the first comprehensive longitudinal study of tuberous sclerosis (TS) and aims to identify factors that determine prognosis. Mode of presentation and findings at initial assessments are reported here. Methods: Children aged 0-16 years newly diagnosed with TS in the UK were evaluated. Results: 125 children with TS were studied. 114 (91%) met clinical criteria for a definite diagnosis and the remaining 11 (9%) had pathogenic TSC1 or TSC2 mutations. In families with a definite clinical diagnosis, the detection rate for pathogenic mutations was 89%. 21 cases (17%) were identified prenatally, usually with abnormalities found at routine antenatal ultrasound examination. 30 cases (24%) presented before developing seizures and in 10 of these without a definite diagnosis at onset of seizures, genetic testing could have confirmed TS. 77 cases (62%) presented with seizures. Median age at recruitment assessment was 2.7 years (range:4 weeks-18 years). Dermatological features of TS were present in 81%. The detection rate of TS abnormalities was 20/107 (19%) for renal ultrasound including three cases with polycystic kidney disease, 51/88 (58%) for echocardiography, 29/35 (83%) for cranial CT and 95/104 (91%) for cranial MRI. 91% of cases had epilepsy and 65% had intellectual disability (IQ<70). Conclusions: Genetic testing can be valuable in confirming the diagnosis. Increasing numbers of cases present prenatally or in early infancy, before onset of seizures, raising important questions about whether these children should have EEG monitoring and concerning the criteria for starting anticonvulsant therapy.