2 resultados para genetic group
em Aston University Research Archive
Resumo:
The goal of this project was to investigate the neural correlates of reading impairment in dyslexia as hypothesised by the main theories – the phonological deficit, visual magnocellular deficit and cerebellar deficit theories, with emphasis on individual differences. This research took a novel approach by: 1) contrasting the predictions in one sample of participants with dyslexia (DPs); 2) using a multiple-case study (and between-group comparisons) to investigate differences in BOLD between each DP and the controls (CPs); 3) demonstrating a possible relationship between reading impairment and its hypothesised neural correlates by using fMRI and a reading task. The multiple-case study revealed that the neural correlates of reading in dyslexia in all cases are not in agreement with the predictions of a single theory. The results show striking individual differences - even, where the neural correlates of reading in two DPs are consistent with the same theory, the areas can differ. A DP can exhibit under-engagement in an area in word, but not in pseudoword reading and vice versa, demonstrating that underactivation in that area cannot be interpreted as a ‘developmental lesion’. Additional analyses revealed complex results. Within-group analyses between behavioural measures and BOLD showed correlations in the predicted regions, areas outside ROI, and lack of correlations in some predicted areas. Comparisons of subgroups which differed on Orthography Composite supported the MDT, but only for Words. The results suggest that phonological scores are not a sufficient predictor of the under-engagement of phonological areas during reading. DPs and CPs exhibited correlations between Purdue Pegboard Composite and BOLD in cerebellar areas only for Pseudowords. Future research into reading in dyslexia should use a more holistic approach, involving genetic and environmental factors, gene by environment interaction, and comorbidity with other disorders. It is argued that multidisciplinary research, within the multiple-deficit model holds significant promise here.
Resumo:
Behavioural studies have shown that dyslexics are a heterogeneous population and between-group comparisons are thus inadequate. Some subjects do not develop dyslexia despite having a deficit implicated in this disorder, which points to protective factors. Dyslexia co-occurs with ADHD, DCD, SLI, and SSD, so that future behavioural studies will need to screen and/or statistically control for other disorders. Studies of multiple cases of DPs with other developmental disorders are necessary. Neuroimaging findings show structural and/or functional brain abnormalities in language areas, V5/MT and the cerebellum. Future neuroimaging studies need to investigate the whole reading network and multiple cases. Six dyslexia risk genes have been found, mostly involved in neural migration, which may suggest dyslexia is a deficit of neuronal migration. However, it is not clear how these genes can restrict migration to specific brain areas. As a complex and heterogeneous disorder, dyslexia is likely to be associated with several mutated genes. ADHD and SSD are characterised by genetic risk factors which are partially shared with dyslexia, resulting in comorbidity. Future genetic studies need to focus on identifying other risk genes and pleiotropic genes involved in comorbidities, and linking genotypes implicated in dyslexia with brain structure. Any theory of dyslexia needs to take into account a multitude of risk and protective factors across behavioural, neural and genetic domains.