3 resultados para gene library

em Aston University Research Archive


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Amino acid substitution plays a vital role in both the molecular engineering of proteins and analysis of structure-activity relationships. High-throughput substitution is achieved by codon randomisation, which generates a library of mutants (a randomised gene library) in a single experiment. For full randomisation, key codons are typically replaced with NNN (64 sequences) or NNG CorT (32 sequences). This obligates cloning of redundant codons alongside those required to encode the 20 amino acids. As the number of randomised codons increases, there is therefore a progressive loss of randomisation efficiency; the number of genes required per protein rises exponentially. The redundant codons cause amino acids to be represented unevenly; for example, methionine is encoded just once within NNN, whilst arginine is encoded six times. Finally, the organisation of the genetic code makes it impossible to encode functional subsets of amino acids (e.g. polar residues only) in a single experiment. Here, we present a novel solution to randomisation where genetic redundancy is eliminated; the number of different genes equals the number of encoded proteins, regardless of codon number. There is no inherent amino acid bias and any required subset of amino acids may be encoded in one experiment. This generic approach should be widely applicable in studies involving randomisation of proteins. © 2003 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although techniques such as biopanning rely heavily upon the screening of randomized gene libraries, there is surprisingly little information available on the construction of those libraries. In general, it is based on the cloning of 'randomized' synthetic oligonucleotides, in which given position(s) contain an equal mixture of all four bases. Yet, many supposedly 'randomized' libraries contain significant elements of bias and/or omission. Here, we report the development and validation of a new, PCR-based assay that enables rapid examination of library composition both prior to and after cloning. By using our assay to analyse model libraries, we demonstrate that the cloning of a given distribution of sequences does not necessarily result in a similarly composed library of clones. Thus, while bias in randomized synthetic oligonucleotide mixtures can be virtually eliminated by using unequal ratios of the four phosphoramidites, the use of such mixtures does not ensure retrieval of a truly randomized library. We propose that in the absence of a technique to control cloning frequencies, the ability to analyse the composition of libraries after cloning will enhance significantly the quality of information derived from those libraries. (C) 2000 Published by Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT