3 resultados para gas entrainment
em Aston University Research Archive
A CFD approach on the effect of particle size on char entrainment in bubbling fluidised bed reactors
Resumo:
The fluid – particle interaction inside a 41.7 mg s-1 fluidised bed reactor is modelled. Three char particles of sizes 500 µm, 250 µm, and 100 µm are injected into the fluidised bed and the momentum transport from the fluidising gas and fluidised sand is modelled. Due to the fluidising conditions and reactor design the char particles will either be entrained from the reactor or remain inside the bubbling bed. The particle size is the factor that differentiates the particle motion inside the reactor and their efficient entrainment out of it. A 3-Dimensional simulation has been performed with a completele revised momentum transport model for bubble three-phase flow according to the literature as an extension to the commercial finite volume code FLUENT 6.2.
Resumo:
A study has been made of the effects of welding and material variables on the occurrence of porosity in tungsten inert gas arc welding of copper. The experiments were based on a statistical design and variables included, welding current, welding speed, arc atmosphere composition, inert gas flow rate, weld preparation, and base material. The extent of weld metal porosity was assessed by density measurement and its morphology by X-ray radiography and metallography. In conjunction with this the copper-steam reaction has been investigated under conditions of controlled atmosphere arc melting. The welding experiments have shown that the extent of steam porosity is increased by increased water vapour content of the arc atmosphere, increased oxygen content of the base material and decreased welding speed. The arc melting experiments have shown that the steam reaction occurs in the body of the weld pool and proceeds to an apparent equi1ibrium state appropriate to to its temperature, the hydrogen and oxygen being supplied by the dissociation of water vapour in the arc atmosphere. It has been shown conclusively that nitrogen porosity can occur in the tungsten inert gas arc welding of copper and that this porosity can be eliminated by using filler wires containing small amounts of aluminum and titanium. Since it has been shown to be much more difficult to produce sound butt welds than melt runs it has been concluded that the porosity associated with joint fit up is due to nitrogen entrained into tho arc atmosphere. Clearly atmospheric entrainment would also, to a much lesser extent, involve water vapour. From a practical welding point of view it has thus been postulated that use of a filler wire containing small amounts of aluminum and/or titanium would eliminate both forms of porosity since these elements are both strongJy deoxidising and denitriding.
Resumo:
The paper presents a 3-dimensional simulation of the effect of particle shape on char entrainment in a bubbling fluidised bed reactor. Three char particles of 350 μm side length but of different shapes (cube, sphere, and tetrahedron) are injected into the fluidised bed and the momentum transport from the fluidising gas and fluidised sand is modelled. Due to the fluidising conditions, reactor design and particle shape the char particles will either be entrained from the reactor or remain inside the bubbling bed. The sphericity of the particles is the factor that differentiates the particle motion inside the reactor and their efficient entrainment out of it. The simulation has been performed with a completely revised momentum transport model for bubble three-phase flow, taking into account the sphericity factors, and has been applied as an extension to the commercial finite volume code FLUENT 6.3. © 2010 Elsevier B.V.All rights reserved.