4 resultados para galactose 1-phosphate uridylyltransferase deficiency
em Aston University Research Archive
Resumo:
The ability of Escherichia coli to express the K88 fimbrial adhesin was satisfactorily indicated by the combined techniques of ELISA, haemagglutination and latex agglutination. Detection of expression by electron microscopy and the ability to metabolize raffinose were unsuitable. Quantitative expression of the K88 adhesin was determined by ELISA. Expression was found to vary according to the E.coli strain examined, media type and form. In general it was found that the total amount was greater, while the amount/cfu was less on agar than in broth cultures. Expression of the K88 adhesin during unshaken batch culture was related to the growth rate and was maximal during late logarithmic to early stationary phase. A combination of heat extraction, ammonium sulphate and isoelectric precipitation was found suitable for both large and small scale preparation of purified K88ab adhesin. Extraction of the K88 adhesin was sensitive to pH and it was postulated that this may affect the site of colonisation of by ETEC in vivo. Results of haemagglutination experiments were consistent with the hypothesis that the K88 receptor present on erythrocytes is composed of two elements, one responsible for the binding of K88ab and K88ac and a second responsible for the binding of the K88ad adhesin. Comparison of the haemagglutinating properties of cell-free and cell-bound K88 adhesin revealed some differences probably indicating a minor conformational change in the K88 adhesin on its isolation. The K88ab adhesin was found to bind to erythrocytes over a wide pH range (PH 4-9) and was inhibited by αK88ab and αK88b antisera. Inhibition of haemagglutination was noted with crude heparin, mannan and porcine gastric mucin, chondrosine and several hexosamines, glucosamine in particular. The most potent inhibitor of haemagglutination was n-dodecyl-β-D-glucopyranoside, one of a series of glucosides found to have inhibitory properties. Correlation between hydrophobicity of glucosides tested and degree of inhibition observed suggested hydrophobic forces were important in the interaction of the K88 adhesin with its receptor. The results of Scatchard and Hill plots indicated that binding of the K88ab adhesin to porcine enterocytes in the majority of cases is a two-step, three component system. The first K88 receptor (or site) had a K2. of 1.59x1014M-1 and a minimum of 4.3x104 sites/enterocyte. The second receptor (or site) had a K2 of 4.2x1012M-1 with a calculated 1.75x105 sites/enterocyte. Attempts to inhibit binding of cell-free K88 adhesin to porcine enterocytes by lectins were unsuccessful. However, several carbohydrates including trehalose, lactulose, galactose 1→4 mannopyranoside, chondrosine, galactosamine, stachyose and mannan were inhibitory. The most potent inhibitor was found to be porcine gastric mucin. Inhibition observed with n-octyl-α-D-glucopyranose was difficult to interpret in isolation because of interference with the assay, however, it agreed with the results of haemagglutination inhibition experiments.
Resumo:
Inorganic phosphate is an essential mineral for both prokaryotic and eukaryotic cell metabolism and structure. Its uptake into the cell is mediated by membrane bound transporters and coupled to Na+ transport. Mammalian sodium-dependent Pi co-transporters have been grouped into three families NaPi-I, NaPi-II, and NaPi-III. Despite being discovered more than 2 decades ago, very little is known about requirements for NaPi-III transporters in vivo, in the context of intact animal models. Here we find that impaired function of the C. elegans NaPi-III transporter, pitr-1, results in decreased brood size and dramatically increased expression of vitellogenin by the worm intestine. Unexpectedly, we found that the effects of pitr-1 mutation on vitellogenin expression in the intestine could only be rescued by expression of pitr-1 in the germline, and not by expression of pitr-1 in the intestine itself. Our results indicate the existence of a signal from the germline that regulates gene expression in the intestine, perhaps linking nutrient export from the intestine to production of gametes by the germline.
Resumo:
Placenta growth factor (PlGF) deficient mice are fertile at a Mendelian ratio. Interestingly, low maternal plasma levels of PlGF are strongly associated with early onset of preeclampsia, a pregnancy hypertensive disorder characterised by high blood pressure, proteinuria and fetal growth restriction. PlGF is increasingly being recognised as an early diagnostic biomarker, but the physiological importance of PlGF in the pathogenesis of preeclampsia is unknown. We investigated whether the decreased levels of PlGF in pregnancy exacerbate the fetal growth restriction associated with preeclampsia in the presence of high sFlt-1 and the potential of hydrogen sulphide to ameliorate these effects. Pregnant PlGF−/− mice were injected with adenovirus encoding sFlt-1 (Ad-sFlt-1) at 1 × 109 pfu/ml at E10.5 and mean arterial blood pressure (MAP), biochemical and histological analysis of maternal kidney, placenta and embryos were assessed at the end of pregnancy. Ad-sFlt-1 significantly increased MAP and induced severe glomerular endotheliosis in PlGF−/− mice compared to wild-type animals. Soluble Flt-1 also significantly elevated albumin–creatinine ratio and increased levels of urinary kidney injury molecule-1, a marker for proximal tubule injury. Furthermore, sFlt-1 over expression increased fetal resorption rate in the PlGF−/− mice and promoted abnormal placental vascularisation. To determine whether placental PlGF is critical for preventing fetal growth restriction associated with preeclampsia, we generated haploinsufficient PlGF+/− placentas and embryos in dams and exposed to high sFlt-1 environment. These mothers showed reduced fetal resorption, gestational hypertension and proteinuria when compared to pregnant PlGF−/− mice. Furthermore, treatment with hydrogen sulphide-releasing agent, GYY4137, significantly reduced resorption, hypertension and proteinuria observed in Ad-sFlt-1 treated pregnant PlGF−/− mice. Our study shows that placental PlGF is a critical protective factor against the damaging effects of high sFlt-1 associated with preeclampsia and activation of the hydrogen sulphide pathway may rescue preeclampsia phenotypes even under low PlGF environment.
Resumo:
INTRODUCTION: Low circulating levels of placenta growth factor (PlGF) is strongly associated with the onset of preeclampsia, a maternal hypertensive disorder characterized by high blood pressure and proteinuria after 20 weeks of gestation. Although, PlGF-deficient mice are born healthy and fertile at a Mendelian ratio, the physiological importance of PlGF in the pathogenesis of preeclampsia is unclear. We hypothesised that decreased levels of PlGF in pregnancy exacerbates the fetal growth restriction associated with preeclampsia in the presence of high sFlt-1. METHODS: Pregnant PlGF-/- mice were injected with adenovirus encoding sFlt-1 (Ad-sFlt-1) at high (i) 1.5x109 pfu/ml and low (ii) 0.5x109 pfu/ml doses. Mean arterial blood pressure (MBP), biochemical and histological assessments of maternal kidney, placenta and embryos were performed. RESULTS: Ad-sFlt-1 significantly increased MBP and induced severe glomerular endotheliosis in PlGF-/- mice at E10.5 gestation compared to wild-type animals. High sFlt-1 also significantly elevated albumincreatinine ratio and increased levels of urinary kidney injury molecule-1, a marker for proximal tubule injury.At a high dose of sFlt-1, there was complete fetal resorption in the pregnant PlGF-/- mice, and even the lower dose of sFlt-1 induced severe fetal resorption and abnormal placental vascularization. Hydrogen sulphide-releasing agent, GYY4137, significantly reduced resorption, hypertension and proteinuria in Ad-sFlt-1 treated pregnant PlGF-/- mice. To determine if placental PlGF is critical for preventing fetal growth restriction associated with preeclampsia, we generated haploinsufficient PlGF+/- placentas and embryos were generated in wild-time dams and exposed to high sFlt-1 environment. This resulted in reduced fetal resorption, gestational hypertension and proteinuria when compared to pregnant PlGF-/- mice. CONCLUSIONS: Placental PlGF is a critical protective factor against the damaging effects of high sFlt-1 in preeclampsia and the hydrogen sulphide pathway may rescue preeclampsia phenotypes.