4 resultados para frp

em Aston University Research Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this work has been to investigate the principle of combined bioreaction and separation in a simulated counter-current chromatographic bioreactor-separator system (SCCR-S). The SCCR-S system consisted of twelve 5.4cm i.d x 75cm long columns packed with calcium charged cross-linked polystyrene resin. Three bioreactions, namely the saccharification of modified starch to maltose and dextrin using the enzyme maltogenase, the hydrolysis of lactose to galactose and glucose in the presence of the enzyme lactase and the biosynthesis of dextran from sucrose using the enzyme dextransucrase. Combined bioreaction and separation has been successfully carried out in the SCCR-S system for the saccharification of modified starch to maltose and dextrin. The effects of the operating parameters (switch time, eluent flowrate, feed concentration and enzyme activity) on the performance of the SCCR-S system were investigated. By using an eluent of dilute enzyme solution, starch conversions of up to 60% were achieved using lower amounts of enzyme than the theoretical amount required by a conventional bioreactor to produce the same amount of maltose over the same time period. Comparing the SCCR-S system to a continuous annular chromatograph (CRAC) for the saccharification of modified starch showed that the SCCR-S system required only 34.6-47.3% of the amount of enzyme required by the CRAC. The SCCR-S system was operated in the batch and continuous modes as a bioreactor-separator for the hydrolysis of lactose to galactose and glucose. By operating the system in the continuous mode, the operating parameters were further investigated. During these experiments the eluent was deionised water and the enzyme was introduced into the system through the same port as the feed. The galactose produced was retarded and moved with the stationary phase to be purge as the galactose rich product (GalRP) while the glucose moved with the mobile phase and was collected as the glucose rich product (GRP). By operating at up to 30%w/v lactose feed concentrations, complete conversions were achieved using only 48% of the theoretical amount of enzyme required by a conventional bioreactor to hydrolyse the same amount of glucose over the same time period. The main operating parameters affecting the performance of the SCCR-S system operating in the batch mode were investigated and the results compared to those of the continuous operation of the SCCR-S system. . During the biosynthesis of dextran in the SCCR-S system, a method of on-line regeneration of the resin was required to operate the system continuously. Complete conversion was achieved at sucrose feed concentrations of 5%w/v with fructose rich. products (FRP) of up to 100% obtained. The dextran rich products were contaninated by small amounts of glucose and levan formed during the bioreaction. Mathematical modelling and computer simulation of the SCCR-S. system operating in the continuous mode for the hydrolysis of lactose has been carried out. .

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Combined bioreaction separation studies have been carried out for the first time on a moving port semi-continuous counter-current chromatographic reactor-separator (SCCR-S1) consisting of twelve 5.4cm id x 75cm long columns packed with calcium charged cross-linked polystyrene resin (KORELA V07C). The inversion of sucrose to glucose and fructose in the presence of the enzyme invertase and the biochemIcal synthesis of dextran and fructose from sucrose in the presence of the enzyme dextransucrase were investigated. A dilute stream of the appropriate enzyme in deionised water was used as the eluent stream. The effect of switch time, feed concentration, enzyme activity, eluent rate and enzyme to feed concentration ratio on the combined bioreaction-separation were investigated. For the invertase reaction, at 20.77% w/v sucrose feed concentrations complete conversions were achieved. The enzyme usage was 34% of the theoretical enzyme amount needed to convert an equivalent amount of sucrose over the same time period when using a conventional fermenter. The fructose rich (FRP) and glucose rich (GRP) product purities obtained were over 90%. By operating at 35% w/v sucrose feed concentration and employing the product splitting and recycling techniques, the total concentration and purity of the GRP increased from 32% w/v to 4.6% and from 92.3% to 95% respectively. The FRP concentration also increased from 1.82% w/v to 2.88% w/v. A mathematical model was developed for the combined reaction-separation and used to simulate the continuous inversion of sucrose and product separation using the SCCR-S1. In the biosynthesis of dextran studies, 52% conversion of a 2% w/v sucrose concentration feed was achieved. An average dextran molecular weight of 4 millIon was obtained in the dextran rich (DRP) product stream. The enzyme dextransucrase was purifed successfully using centrifugation and ultrafiltration techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A review of the general chromatographic theory and of continuous chromatographic techniques has been carried out. Three methods of inversion of sucrose to glucose and fructose in beet molasses were explored. These methods were the inversion of sucrose using the enzyme invertase, by the use of hydrochloric acid and the use of the resin Amberlite IR118 in the H+ form. The preferred method on economic and purity considerations was by the use of the enzyme invertase. The continuous chromatographic separation of inverted beet molasses resulting in a fructose rich product and a product containing glucose and other non-sugars was carried out using a semi-continuous counter-current chromatographic refiner (SCCR6), consisting of ten 10.8cm x 75cm long stainless steel columns packed with a calcium charged 8% cross-linked polystyrene resin Zerolit SRC 14. Based on the literature this is the first time such a continuous separation has been attempted. It was found that the cations present in beet molasses displaced the calcium ions from the resin resulting in poor separation of the glucose and fructose. Three methods of maintaining the calcium form of the resin during the continuous operation of the equipment were established. Passing a solution of calcium nitrate through the purge column for half a switch period was found to be most effective as there was no contamination of the main fructose rich product and the product concentrations were increased by 50%. When a 53% total solids (53 Brix) molasses feedstock was used, the throughput was 34.13kg sugar solids per m3 of resin per hour. Product purities of 97% fructose in fructose rich (FRP) and 96% glucose in the glucose rich (GRP) products were obtained with product concentrations of 10.93 %w/w for the FRP and 10.07 %w/w for the GRP. The effects of flowrates, temperature and background sugar concentration on the distribution coefficients of fructose, glucose, betaine and an ionic component of beet molasses were evaluated and general relationships derived. The computer simulation of inverted beet molasses separations on an SCCR system has been carried out successfully.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The separation performance of a semicontinuous counter-current chromatographic refiner (SCCR7), consisting of twelve 5.4 cm id x 75cm long columns packed with calcium charged cross-linked polysytrene resin (KORELA VO7C), was optimised. An industrial barley syrup was used containing 42% fructose, 52% glucose and 6% maltose and oligosaccharides. The effects of temperature, flow rates and concentration on the distribution coefficients were evaluated and quantified by deriving general relationships. The effects of flow rates, feed composition and concentration on the separation performance of the SCCR7 were identified and general relationships between them and the switch time, which was found to be the controlling parameter, were developed. Fructose rich (FRP) and glucose rich (GRP) product purities of 99.9% were obtained at 18.6% w/v feed concentrations. When a 66% w/v feed concentration was used and product splitting technique was employed, the throughput was 32.1 kg sugar solids/m3 resin/hr. The GRP contained less than 4.5% fructose, the FRP was over 95% pure, and the respective concentrations were 22.56 and 11.29% w/v. Over 94% of the glucose and 95.78% of the fructose in the feed were recovered in the GRP and FRP respectively. By recycling the dilute product split fractions, the GRP and FRP concentrations were increased to 25.4 and 12.96% w/v; the FRP was 90.2% pure and the GRP contained 6.69% w/v fructose. A theoretical link between batch and semicontinuous chromatographic equipments has been determined. A computer simulation was developed predicting successfully the purging concentration profiles at `pseudo-equilibrium', and also certain system design parameters. An important further aspect of the work has been to study the behaviour of chromatographic bioreactor-separators. Such batch systems of 5.4cm id and lengths varying between 30 and 230cm, were used to investigate the effect of scaling up on the conversion of sucrose into dextran and fructose in the presence of the dextransucrase enzyme. Conversions of over 80% were achieved at 4 hr sucrose residence times. The crude dextransucrase was purified using centrifugation, ultrafiltration and cross-flow microfiltration techniques. Better enzyme stability was obtained by first separating the non-solid impurities using cross-flow microfiltration, and then removing the cells from the enzyme immediately before use by continuous centrifugation.