30 resultados para frequency of speech
em Aston University Research Archive
Resumo:
How speech is separated perceptually from other speech remains poorly understood. Recent research indicates that the ability of an extraneous formant to impair intelligibility depends on the variation of its frequency contour. This study explored the effects of manipulating the depth and pattern of that variation. Three formants (F1+F2+F3) constituting synthetic analogues of natural sentences were distributed across the 2 ears, together with a competitor for F2 (F2C) that listeners must reject to optimize recognition (left = F1+F2C; right = F2+F3). The frequency contours of F1 − F3 were each scaled to 50% of their natural depth, with little effect on intelligibility. Competitors were created either by inverting the frequency contour of F2 about its geometric mean (a plausibly speech-like pattern) or using a regular and arbitrary frequency contour (triangle wave, not plausibly speech-like) matched to the average rate and depth of variation for the inverted F2C. Adding a competitor typically reduced intelligibility; this reduction depended on the depth of F2C variation, being greatest for 100%-depth, intermediate for 50%-depth, and least for 0%-depth (constant) F2Cs. This suggests that competitor impact depends on overall depth of frequency variation, not depth relative to that for the target formants. The absence of tuning (i.e., no minimum in intelligibility for the 50% case) suggests that the ability to reject an extraneous formant does not depend on similarity in the depth of formant-frequency variation. Furthermore, triangle-wave competitors were as effective as their more speech-like counterparts, suggesting that the selection of formants from the ensemble also does not depend on speech-specific constraints.
Resumo:
How speech is separated perceptually from other speech remains poorly understood. Recent research indicates that the ability of an extraneous formant to impair intelligibility depends on the variation of its frequency contour. This study explored the effects of manipulating the depth and pattern of that variation. Three formants (F1+F2+F3) constituting synthetic analogues of natural sentences were distributed across the 2 ears, together with a competitor for F2 (F2C) that listeners must reject to optimize recognition (left = F1+F2C; right = F2+F3). The frequency contours of F1 - F3 were each scaled to 50% of their natural depth, with little effect on intelligibility. Competitors were created either by inverting the frequency contour of F2 about its geometric mean (a plausibly speech-like pattern) or using a regular and arbitrary frequency contour (triangle wave, not plausibly speech-like) matched to the average rate and depth of variation for the inverted F2C. Adding a competitor typically reduced intelligibility; this reduction depended on the depth of F2C variation, being greatest for 100%-depth, intermediate for 50%-depth, and least for 0%-depth (constant) F2Cs. This suggests that competitor impact depends on overall depth of frequency variation, not depth relative to that for the target formants. The absence of tuning (i.e., no minimum in intelligibility for the 50% case) suggests that the ability to reject an extraneous formant does not depend on similarity in the depth of formant-frequency variation. Furthermore, triangle-wave competitors were as effective as their more speech-like counterparts, suggesting that the selection of formants from the ensemble also does not depend on speech-specific constraints. © 2014 The Author(s).
Resumo:
Six experiments investigated the influence of several grouping cues within the framework of the Verbal Transformation Effect (VTE, Experiments 1 to 4) and Phonemic Transformation Effect (PTE, Experiments 5 and 6), where listening to a repeated word (VTE) or sequence of vowels (PTE) produces verbal transformations (VTs). In Experiment 1, the influence of F0 frequency and lateralization cues (ITDs) was investigated in terms of the pattern of VTs. As the lateralization difference increased between two repeating sequences, the number of forms was significantly reduced with the fewest forms reported in the dichotic condition. Experiment 2 explored whether or not propensity to report more VTs on high pitch was due to the task demands of monitoring two sequences at once. The number of VTs reported was higher when listeners were asked to attend to one sequence only, suggesting smaller attentional constraints on the task requirements. In Experiment 3, consonant-vowel transitions were edited out from two sets of six stimuli words with ‘strong’ and ‘weak’ formant transitions, respectively. Listeners reported more forms in the spliced-out than in the unedited case for the strong-transition words, but not for those with weak transitions. A similar trend was observed for the F0 contour manipulation used in Experiment 4 where listeners reported more VTs and forms for words following a discontinuous F0 contour. In Experiments 5 and 6, the role of F0 frequency and ITD cues was investigated further using a related phenomenon – the PTE. Although these manipulations had relatively little effect on the number of VTs and forms reported, they did influence the particular forms heard. In summary, the current experiments confirmed that it is possible to successfully investigate auditory grouping cues within the VTE framework and that, in agreement with recent studies, the results can be attributed to the perceptual re-grouping of speech sounds.
Resumo:
This study explored the role of formant transitions and F0-contour continuity in binding together speech sounds into a coherent stream. Listening to a repeating recorded word produces verbal transformations to different forms; stream segregation contributes to this effect and so it can be used to measure changes in perceptual coherence. In experiment 1, monosyllables with strong formant transitions between the initial consonant and following vowel were monotonized; each monosyllable was paired with a weak-transitions counterpart. Further stimuli were derived by replacing the consonant-vowel transitions with samples from adjacent steady portions. Each stimulus was concatenated into a 3-min-long sequence. Listeners only reported more forms in the transitions-removed condition for strong-transitions words, for which formant-frequency discontinuities were substantial. In experiment 2, the F0 contour of all-voiced monosyllables was shaped to follow a rising or falling pattern, spanning one octave. Consecutive tokens either had the same contour, giving an abrupt F0 change between each token, or alternated, giving a continuous contour. Discontinuous sequences caused more transformations and forms, and shorter times to the first transformation. Overall, these findings support the notion that continuity cues provided by formant transitions and the F0 contour play an important role in maintaining the perceptual coherence of speech.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY WITH PRIOR ARRANGEMENT
Resumo:
Correlations between the morphology of beta-amyloid (A beta) deposits and the frequency with which they are associated with neurons and glial cells were studied in Down's syndrome. The diameter of diffuse deposits was positively correlated with the frequency of large (> 25 microns) neuronal cell bodies in the isocortex and with glial cells in the hippocampus. Diameters of primitive deposits were positively correlated with glial cells in the hippocampus and with glial cells and neurons in the isocortex. Staining intensity was positively correlated with glial cells especially in the hippocampus. The data suggest that: (i) diffuse deposits develop from neurons and primitive deposits from glia; (ii) the size of A beta deposits depends on the numbers of neurons and glia; (iii) glial cells are also involved in the conversion of A beta to amyloid; and (iv) the increased density of primitive deposits in the hippocampus is determined by the high density of glial cells.
Resumo:
Three lichen species were wetted with distilled water at different frequencies during August 1973 to July 1974. The radial growth rates of Parmelia glabratula ssp. fuliginosa and Physcia orbicularis thalli declined with increased wetting while the radial growth rate of Parmelia conspersa thalli increased with wetting frequency until ten experimental wettings per month but at fifteen wettings per month fell to a value near to the control. In the summer months, wetting resulted in a decline in the radial growth of P. glabratula ssp fuliginosa compared with the control but had little influence on the growth of P. conspersa and Physcia orbicularis. In the winter months, wetting had no significant influence on the radial growth of Parmelia glabratula ssp. fuliginosa, while the radial growth of P. conspersa increased and Physcia orbicularis declined compared with controls. These results are interpreted physiologically and in relation to the aspect distribution of the three lichens on rock surfaces.
Resumo:
Microwave signal generation by using the photonic beating from a phase-shift fiber Bragg grating (PS-FBG)-based dual-wavelength laser is proposed and experimentally demonstrated. The dual-wavelength laser is formed by a linear cavity, in which a PS-FBG is used as a dual-wavelength selective component. Transversal loading on the PS-FBG enhances the birefringence of the optical fiber and consequently makes the transmission peak of the PS-FBG splitting into two sharp transmission peaks of orthogonal polarizations. The wavelength spacing between the two transmission peaks increases with the transversal loading on the PS-FBG, thus making the polarization beating frequency increase. This property is exploited in a transversal loading sensor.
Resumo:
Poster Introduction: In neovascular age-related macular degeneration (nAMD), optical coherence tomography (OCT) is an important tool to determine when intravitreal injections of ranibizumab should be administered. Current guidelines recommend that patients should be reviewed four weekly and OCT indications for further treatment include subretinal fluid and intraretinal fluid or cysts. Purpose: We have reviewed the OCT scans of subjects who have successfully responded to ranibizumab to look for factors that might predict which patients will not require injection and could have extended appointments. Method: This was a prospective study in which we observed for 6 consecutive months the OCT images of 28 subjects who had received intravitreal ranibizumab for nAMD and were judged to be clinically inactive at recruitment to the study. Ratios between full retinal thickness (FRT = neurosensory retina + outer reflective band) and outer reflective band (ORB) thickness at the fovea were calculated for each subject at the moment of entering the study and at each successive visit for 6 consecutive months. Results: Patients with lower FRT/ORB ratios were found to be less likely to require an additional injection of ranibizumab and no subject with a ratio of 1.75 or less needed further injections. Conclusion: This small pilot study suggests that on macular OCT, the FRT/ORB ratio, and in particular values of 1.75 or less, may prove to be a useful, practical tool when deciding the follow up period for subjects undergoing treatment with intravitreal ranibizumab for nAMD.
Resumo:
This paper discusses the first of three studies which collectively represent a convergence of two ongoing research agendas: (1) the empirically-based comparison of the effects of evaluation environment on mobile usability evaluation results; and (2) the effect of environment - in this case lobster fishing boats - on achievable speech-recognition accuracy. We describe, in detail, our study and outline our results to date based on preliminary analysis. Broadly speaking, the potential for effective use of speech for data collection and vessel control looks very promising - surprisingly so! We outline our ongoing analysis and further work.
Resumo:
Current models of word production assume that words are stored as linear sequences of phonemes which are structured into syllables only at the moment of production. This is because syllable structure is always recoverable from the sequence of phonemes. In contrast, we present theoretical and empirical evidence that syllable structure is lexically represented. Storing syllable structure would have the advantage of making representations more stable and resistant to damage. On the other hand, re-syllabifications affect only a minimal part of phonological representations and occur only in some languages and depending on speech register. Evidence for these claims comes from analyses of aphasic errors which not only respect phonotactic constraints, but also avoid transformations which move the syllabic structure of the word further away from the original structure, even when equating for segmental complexity. This is true across tasks, types of errors, and, crucially, types of patients. The same syllabic effects are shown by apraxic patients and by phonological patients who have more central difficulties in retrieving phonological representations. If syllable structure was only computed after phoneme retrieval, it would have no way to influence the errors of phonological patients. Our results have implications for psycholinguistic and computational models of language as well as for clinical and educational practices.
Resumo:
This paper discusses the first of three studies which collectively represent a convergence of two ongoing research agendas: (1) the empirically-based comparison of the effects of evaluation environment on mobile usability evaluation results; and (2) the effect of environment - in this case lobster fishing boats - on achievable speech-recognition accuracy. We describe, in detail, our study and outline our results to date based on preliminary analysis. Broadly speaking, the potential for effective use of speech for data collection and vessel control looks very promising - surprisingly so! We outline our ongoing analysis and further work.
Resumo:
Research on aphasia has struggled to identify apraxia of speech (AoS) as an independent deficit affecting a processing level separate from phonological assembly and motor implementation. This is because AoS is characterized by both phonological and phonetic errors and, therefore, can be interpreted as a combination of deficits at the phonological and the motoric level rather than as an independent impairment. We apply novel psycholinguistic analyses to the perceptually phonological errors made by 24 Italian aphasic patients. We show that only patients with relative high rate (>10%) of phonetic errors make sound errors which simplify the phonology of the target. Moreover, simplifications are strongly associated with other variables indicative of articulatory difficulties - such as a predominance of errors on consonants rather than vowels -but not with other measures - such as rate of words reproduced correctly or rates of lexical errors. These results indicate that sound errors cannot arise at a single phonological level because they are different in different patients. Instead, different patterns: (1) provide evidence for separate impairments and the existence of a level of articulatory planning/programming intermediate between phonological selection and motor implementation; (2) validate AoS as an independent impairment at this level, characterized by phonetic errors and phonological simplifications; (3) support the claim that linguistic principles of complexity have an articulatory basis since they only apply in patients with associated articulatory difficulties.