49 resultados para freeze drying

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trehalose is a well known protector of biostructures like liposomes and proteins during freeze-drying, but still today there is a big debate regarding its mechanism of action. In previous experiments we have shown that trehalose is able to protect a non-phospholipid-based liposomal adjuvant (designated CAF01) composed of the cationic dimethyldioctadecylammonium (DDA) and trehalose 6,6-dibehenate (TDB) during freeze-drying [D. Christensen, C. Foged, I. Rosenkrands, H.M. Nielsen, P. Andersen, E.M. Agger, Trehalose preserves DDA/TDB liposomes and their adjuvant effect during freeze-drying, Biochim. Biophys. Acta, Biomembr. 1768 (2007) 2120-2129]. Furthermore it was seen that TDB is required for the stabilizing effect of trehalose. Herein, we show using the Langmuir-Blodgett technique that a high concentration of TDB present at the water-lipid interface results in a surface pressure around 67 mN/m as compared to that of pure DDA which is approximately 47 mN/m in the compressed state. This indicates that the attractive forces between the trehalose head group of TDB and water are greater than those between the quaternary ammonium head group of DDA and water. Furthermore, addition of trehalose to a DDA monolayer containing small amounts of TDB also increases the surface pressure, which is not observed in the absence of TDB. This suggests that even small amounts of trehalose groups on TDB present at the water-lipid interface associate free trehalose to the liposome surface, presumably by hydrogen bonding between the trehalose head groups of TDB and the free trehalose molecules. Hence, for CAF01 the TDB component not only stabilizes the cationic liposomes and enhances the immune response but also facilitates the cryo-/lyoprotection by trehalose through direct interaction with the head group of TDB. Furthermore the results indicate that direct interaction with liposome surfaces is necessary for trehalose to enable protection during freeze-drying.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The drug efflux pump P-glycoprotein (P-gp) (ABCB1) confers multidrug resistance, a major cause of failure in the chemotherapy of tumours, exacerbated by a shortage of potent and selective inhibitors. A high throughput assay using purified P-gp to screen and characterise potential inhibitors would greatly accelerate their development. However, long-term stability of purified reconstituted ABCB1 can only be reliably achieved with storage at -80 °C. For example, at 20 °C, the activity of ABCB1 was abrogated with a half-life of <1 day. The aim of this investigation was to stabilise purified, reconstituted ABCB1 to enable storage at higher temperatures and thereby enable design of a high throughput assay system. The ABCB1 purification procedure was optimised to allow successful freeze drying by substitution of glycerol with the disaccharides trehalose or maltose. Addition of disaccharides resulted in ATPase activity being retained immediately following lyophilisation with no significant difference between the two disaccharides. However, during storage trehalose preserved ATPase activity for several months regardless of the temperature (e.g. 60% retention at 150 days), whereas ATPase activity in maltose purified P-gp was affected by both storage time and temperature. The data provide an effective mechanism for the production of resilient purified, reconstituted ABCB1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The body of work presented in this thesis are in three main parts: [1] the effect of ultrasound on freezing events of ionic systems, [2] the importance of formulation osmolality in freeze drying, and [3] a novel system for increasing primary freeze drying rate. Chapter 4 briefly presents the work on method optimisation, which is still very much in its infancy. Aspects of freezing such as nucleation and ice crystal growth are strongly related with ice crystal morphology; however, the ice nucleation process typically occurs in a random, non-deterministic and spontaneous manner. In view of this, ultrasound, an emerging application in pharmaceutical sciences, has been applied to aid in the acceleration of nucleation and shorten the freezing process. The research presented in this thesis aimed to study the effect of sonication on nucleation events in ionic solutions, and more importantly how sonication impacts on the freezing process. This work confirmed that nucleation does occur in a random manner. It also showed that ultrasonication aids acceleration of the ice nucleation process and increases the freezing rate of a solution. Cryopreservation of animal sperm is an important aspect of breeding in animal science especially for endangered species. In order for sperm cryopreservation to be successful, cryoprotectants as well as semen extenders are used. One of the factors allowing semen preservation media to be optimum is the osmolality of the semen extenders used. Although preservation of animal sperm has no relation with freeze drying of pharmaceuticals, it was used in this thesis to make a case for considering the osmolality of a formulation (prepared for freeze drying) as a factor for conferring protein protection against the stresses of freeze drying. The osmolalities of some common solutes (mostly sugars) used in freeze drying were determined (molal concentration from 0.1m to 1.2m). Preliminary investigation on the osmolality and osmotic coefficients of common solutes were carried out. It was observed that the osmotic coefficient trend for the sugars analysed could be grouped based on the types of sugar they are. The trends observed show the need for further studies to be carried out with osmolality and to determine how it may be of importance to protein or API protection during freeze drying processes. Primary drying is usually the longest part of the freeze drying process, and primary drying times lasting days or even weeks are not uncommon; however, longer primary drying times lead to longer freeze drying cycles, and consequently increased production costs. Much work has been done previously by others using different processes (such as annealing) in order to improve primary drying times; however, these do not come without drawbacks. A novel system involving the formation of a frozen vial system which results in the creation of a void between the formulation and the inside wall of a vial has been devised to increase the primary freeze drying rate of formulations without product damage. Although the work is not nearly complete, it has been shown that it is possible to improve and increase the primary drying rate of formulations without making any modifications to existing formulations, changing storage vials, or increasing the surface area of freeze dryer shelves.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Orally disintegrating tablets (ODTs) which are also referred to as orodispersible and fast disintegrating tablets, are solid oral dosage forms which upon placing on the tongue, disperse/disintegrate rapidly before being swallowed as a suspension or solution. ODTs are therefore easier and more convenient to administer than conventional tablets and are particularly beneficial for paediatric and geriatric patients, who generally have difficulty swallowing their medication. The work presented in this thesis involved the formulation and process development of ODTs, prepared using freeze-drying. Gelatin is one of the principal excipients used in the formulation of freeze-dried ODTs. One of the studies presented in this thesis investigated the potential modification of the properties of this excipient, in order to improve the performance of the tablets. As gelatin is derived from animal sources, a number of ethical issues surround its use as an excipient in pharmaceutical preparations. This was one of the motivations, Methocel™ and Kollicoat® IR were evaluated as binders as alternative materials to gelatin. Polyox™ was also evaluated as a binder together with its potential uses as a viscosity increasing and mucoadhesive agent to increase the retention of tablets in the mouth to encourage pre-gastric absorption of active pharmaceutical ingredients (APIs). The in vitro oral retention of freeze-dried ODT formulations was one property which was assessed in a design of experiments – factorial design study, which was carried out to further understand the role that formulation excipients have on the properties of the tablets. Finally, the novel approach of incorporating polymeric nanoparticles in freeze-dried ODTs was investigated, to study if the release profile of APIs could be modified, which could improve their therapeutic effect. The results from these studies demonstrated that the properties of gelatin-based formulations can be modified by adjusting pH and ionic strength. Adjustment of formulation pH has shown to significantly reduce tablet disintegration time. Evaluating Methocel™, in particular low viscosity grades, and Kollicoat® IR as binders has shown that these polymers can form tablets of satisfactory hardness and disintegration time. Investigating Polyox™ as an excipient in freeze-dried ODT formulations revealed that low viscosity grades appear suitable as binders whilst higher viscosity grades could potentially be utilised as viscosity increasing and mucoadhesive agents. The design of experiments – factorial design study revealed the influence of individual excipients in a formulation mix on resultant tablet properties and in vitro oral retention of APIs. Novel methods have been developed, which allows the incorporation of polymeric nanoparticles in situ in freeze-dried ODT formulations, which allows the modification of the release profile of APIs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Grewia polysaccharide gum, a potential pharmaceutical excipient was extracted from the inner stem bark of Grewia mollis, thereupon drying was achieved by three techniques: air-drying, freeze-drying and spray-drying. Analysis of the monosaccharide composition including 1H and 13C NMR spectroscopic analysis of the polysaccharide gum was carried out. The effect of the drying methods on the physicochemical properties of the gum was evaluated by Fourier transformed infra-red (FT-IR) spectroscopy, solid-state 13C nuclear magnetic resonance (NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis, differential scanning calorimetry and gel permeation chromatography. Monosaccharide sugar analysis revealed that the gum is composed of glucose, rhamnose, galactose, arabinose and xylose as the main neutral sugars. These were supported by the results from 1H and 13C NMR spectroscopic analysis. FT-IR and solid-state NMR results indicated that drying technique has little effect on the structure of the polysaccharide gum but XPS showed that surface chemistry of the gum varied with drying methods. Thermogravimetric analyses showed that oxidation onset varied according to the drying method. The molecular weight was also dependent on the drying technique. For industrial extrapolation, air-drying may be preferable to spray-drying and freeze-drying when relative cost, product stability and powder flow are required, for example in tablet formulation. © 2010 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Orally disintegrating Tablets (ODTs), also known as fast-disintegrating, fast-melt or fast-dissolving tablets, are a relatively novel dosage technology that involves the rapid disintegration or dissolution of the dosage form into a solution or suspension in the mouth without the need for water. The solution containing the active ingredients is swallowed, and the active ingredients are then absorbed through the gastrointestinal epithelium to reach the target and produce the desired effect. Formulation of ODTs was originally developed to address swallowing difficulties of conventional solid oral dosage forms (tablets and capsules) experienced by wide range of patient population, especially children and elderly. The current work investigates the formulation and development of ODTs prepared by freeze drying. Initial studies focused on formulation parameters that influence the manufacturing process and performance of lyophilised tablets based on excipients used in commercial products (gelatin and saccharides). The second phase of the work was followed up by comprehensive studies to address the essential need to create saccharide free ODTs using naturally accruing amino acids individually or in combinations. Furthermore, a factorial design study was carried out to investigate the feasibility of delivering multiparticulate systems of challenging drugs using a novel formulation that exploited the electrostatic associative interaction between gelatin and carrageenan. Finally, studies aimed to replace gelatin with ethically and morally accepted components to the end users were performed and the selected binder was used in factorial design studies to investigate and optimise ODT formulations that incorporated drugs with varies physicochemical properties. Our results show that formulation of elegant lyophilised ODTs with instant disintegration and adequate mechanical strength requires carful optimisation of gelatin concentration and bloom strength in addition to saccharide type and concentration. Successful formulation of saccharides free lyophilised ODTs requires amino acids that crystallise in the frozen state or display relatively high Tg', interact and integrate completely with the binder and, also, display short wetting time with the disintegrating medium. The use of an optimised mixture of gelatin, carrageenan and alanine was able to create viscous solutions to suspend multiparticulate systems and at the same time provide tablets with short disintegration times and adequate mechanical properties. On the other hand, gum arabic showed an outstanding potential for use as a binder in the formulation of lyophilised ODTs. Compared to gelatin formulations, the use of gum arabic simplified the formulation stages, shortened the freeze drying cycles and produced tablets with superior performance in terms of the disintegration time and mechanical strength. Furthermore, formulation of lyophilised ODTs based on gum arabic showed capability to deliver diverse range of drugs with advantages over commercial products.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Despite recent advances in the formulation of lyophilised rapid disintegrating tablets (RDTs), the inclusion of matrix supporting/disintegration enhancing agents has been limited to the use of saccharides and polyols. In this study, the feasibility of using amino acids as matrix forming agents in lyophilised RDTs was investigated. Twelve amino acids were chosen (alanine, arginine, threonine, glycine, cysteine, serine, histidine, lysine, valine, asparagine, glutamine and proline), and the suitability for freeze drying, mechanical properties and disintegration time after inclusion of the amino acids at varied concentration were studied. In addition, the porosity of the RDTs and wettability profile of the amino acids were investigated to understand the mechanisms of disintegration. The results suggest the suitability of these amino acids for the lyophilisation regime, as they displayed satisfactory safety margin between the glass transition and shelf temperature (-40 degrees C), except proline-based formulations. Moreover, the crystallisation behavior of alanine, glycine, cysteine and serine at high concentration increased the stability of the formulation. The characterisation of the RDTs suggests that high concentration of the amino acids is required to enhance the mechanical properties, whereas only optimum concentrations promote the disintegration. Moreover, wetting time of the amino acid and porosity of the tablet are the two factors that control the disintegration of RDTs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Orally disintegrating tablets (ODTs) offer many advantages over the conventional oral dosage forms in terms of convenience and ease of use. Over the last decade, substantial advances in the formulation of ODTs have been achieved in academia and industry that resulted in the emerging of a large number of patents. The aim of this review is to summarise the most recent patents in ODT formulations and highlight their motivations, inventive steps and significances in the development of ODT formulations. Five major techniques have been applied in manufacturing of ODTs, namely conventional tablet press, moulding, freeze drying, tablet loading and pulverization, with majority of the patents dedicated to the use of conventional tablet pressing. The patents have addressed various issues concerning the manufacturing of robust and practical ODT formulations by disclosing new manufacturing techniques, advantageous materials, and innovative formulation steps. However, future developments are required to reduce the cost and widening the application of the new manufacturing techniques, while simplifying and shortening the formulation steps will be crucial in the well established ones.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Grewia gum is obtained from the inner stem bark of the edible plant Grewia mollis Juss (Fam. Tiliaceae) which grows widely in the middle belt region of Nigeria, and is also cultivated. The dried and pulverised inner stem bark is used as a thickening agent in some food delicacies in that region of the country. This ability of the material to increase solution viscosity has generated a lot of interest and is the catalysing momentum for this research. Such materials have been used as stabilizers or suspending agents in cosmetics, foods and liquid medications, and as mucoadhesives and controlled release polymeric matrices in solid dosage forms. The physicochemical characterization of candidate excipients forms an essential step towards establishing suitability for pharmaceutical application. For natural gums, this usually requires isolation of the gum from the storage site by extraction processes. Grewia polysaccharide gum was extracted and dried using techniques such as air-drying, freeze-drying or spray-drying. Component analysis of the gum showed that it contains five neutral sugars: glucose, galactose, rhamnose, arabinose and xylose. The gum contains traces of elements such as zinc, magnesium, calcium and phosphorus. At low substance weight, the gum hydrates in aqueous medium swelling and dispersing to give a highly viscous dispersion with pseudoplasmic flow behaviour. The method by which drying is achieved can have significant effect on some physicochemical properties of the gum. Consequently, the intrinsic viscosity and molecular weight, and parameters of powder flow were shown to differ with the method of drying. The gum has good thermal stability. In comparison with established excipients, grewia gum may be preferable to gum Arabic or sodium carboxymethylcellulose as a suspending agent in ibuprofen suspension formulations. The release retardant property of the gum was superior to guar and Metolose® in ibuprofen matrices. Similarly, carboxy methylcellulose, Methocel®, gum Arabic or Metolose® may not be preferable to grewia gum when controlled release of a soluble drug like cimetidine is indicated. The mucoadhesive performance of the gum compared favourably with excellent mucoadhesives such as hydroxypropyl methylcellulose, carboxymethylcellulose, guar and carbopol 971 P.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Poorly water-soluble drugs show an increase in solubility in the presence of cyclodextrins (CyD) due to the formation of a water-soluble complex between the drug and dissolved CyD. This study investigated the interactions of -Cyd and hydroxypropyl--CyD (HP--CyD, M.S. = 0.6) with antimicrobial agents of limited solubility in an attempt to increase their microbiological efficacy. The agents studied were chlorhexidine dihydrochloride (CHX), p-hydroxybenzoic acid esters (methyl, ethyl, proply and butyl) and triclosan. The interactions between the antimicrobials and CyDs were studied in solution and solid phases. Phase solubility studied revealed an enhancement in the aqueous drug solubility in the presence of the CyD and also gave an indication of the complex stability constant (Ks). The temperature-dependence of the stability constant of the complex was modelled by the van't Hoff plot which yielded the thermodynamic parameters for complexation. Further confirmation of the inclusion of the antimicrobials within the cavity of the CyDs in aqueous solution was obtained from proton magnetic resonance and ultraviolet absorption spectroscopies. The former method indicated that the chlorophenyl moiety of the CHX was included within the -CyD cavity and the stoichiometry of the complex formed was 1:1. The solid-phase complexes were prepared by freeze-drying. The inclusion complex of triclosan with HP--CyD was obtained from aqueous solution with the addition of ammonia. Evidence to confirm complex formation was obtained from DSC, IR and X-ray powder diffraction studies. Dissolution studies of the solid inclusion complexes using the dispersed powder technique illustrated their superior solubilities as compared to the equimolar physical mix of the guest and CyD. It was shown that these solutions of the complex were supersaturated with respect to the free guest. This was further demonstrated by diffusion studies which showed the flux of free drug from donor solutions of the antimicrobial-CyD complex to be significantly greater than the flux from donor suspensions of drug alone.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This research focused on the formation of particulate delivery systems for the sub-unit fusion protein, Ag85B-ESAT-6, a promising tuberculosis (TB) vaccine candidate. Initial work concentrated on formulating and characterising, both physico-chemically and immunologically, cationic liposomes based on the potent adjuvant dimethyl dioctadecyl ammonium (DDA). These studies demonstrated that addition of the immunomodulatory trehalose dibehenate (TDB) enhanced the physical stability of the system whilst also adding further adjuvanticity. Indeed, this formulation was effective in stimulating both a cell mediated and humoural immune response. In order to investigate an alternative to the DDA-TDB system, microspheres based on poly(DL-lactide-co-glycolide) (PLGA) incorporating the adjuvants DDA and TDB, either alone or in combination, were first optimised in terms of physico-chemical characteristics, followed by immunological analysis. The formulation incorporating PLGA and DDA emerged as the lead candidate, with promising protection data against TB. Subsequent optimisation of the lead microsphere formulation investigated the effect of several variables involved in the formulation process on physico-chemical and immunological characteristics of the particles produced. Further, freeze-drying studies were carried out with both sugar-based and amino acid-based cryoprotectants, in order to formulate a stable freexe-dried product. Finally, environmental scanning electron microscopy (ESEM) was investigated as a potential alternative to conventional SEM for the morphological investigation of microsphere formulations. Results revealed that the DDA-TDB liposome system proved to be the most immunologically efficient delivery vehicle studied, with high levels of antibody and cytokine production, particularly gamma-interferon (IFN-ϒ), considered the key cytokine marker for anti-mycobacterial immunity. Of the microsphere systems investigated, PLGA in combination with DDA showed the most promise, with an ability to initiate a broad spectrum of cytokine production, as well as antigen specific spleen cell proliferation comparable to that of the DDA-TDB formulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work peptide antigens [ESAT-6,p45 in water (1ml, 1mg/ml)] have been adsorbed onto 10mg inorganic substrates (hydroxyapatite (MHA P201;P120, CHA), polystyrene, calcium carbonate and glass microspheres) and in vitro release characteristics were determined. The aim of formulation was to enhance the interaction of peptides with antigen presenting cells and to achieve rapid peptide release from the carrier compartment system in a mildly acidic environment. Hydroxyapatite microparticle P201 has a greater surface area and thus has the largest peptide adsorption compared to the P120. CHA gave a further higher adsorption due to larger surface area than that available on microparticles. These particles were incorporated into the BOVIGAMTM assay to determine if they improve the sensitivity. After overnight incubation the blood plasma was removed and the amount of IFN-g in each plasma sample was estimated. CHA and MHA P201 gave a significantly higher immune response at low peptide concentration compared to the free peptide, thus indicating that these systems can be used to evaluate Tuberculosis (TB) amongst cattle using the BOVIGAMTM assay. Badgers are a source of TB and pass infection to cattle. At the moment vaccination against TB in badgers is via the parenteral route and requires a trained veterinary surgeon as well as catching the badgers. This process is expensive and time consuming; consequently an oral delivery system for delivery of BCG vaccines is easier and cheaper. The initial stage involved addition of various surfactants and suspending agents to disperse BCG and the second stage involved testing for BCG viability. Various copolymers of Eudragit were used as enteric coating systems to protect BCG against the acidic environment of the stomach (SGF, 0.1M HCl pH 1.2 at 37oC) while dissolving completely in the alkaline environment of the small intestine (SIF, IM PBS solution pH 7.4 at 37oC). Eudragit L100 dispersed in 2ml PBS solution and 0.9ml Tween 80 (0.1%w/v) gave the best results remaining intact in SGF loosing only approximately 10-15% of the initial weight and dissolving completely within 3 hours. BCG was incorporated within the matrix formulation adjusted to pH 7 at the initial formulation stage containing PBS solution and Tween 80. It gave viability of x106 cfu/ml at initial formulation stage, freezing and freeze-drying stages. After this stage the matrix was compressed at 4 tons for 3 mins and placed in SGF for 2 hours and then in SIF until dissolved. The BCG viability dropped to x106 cfu/ml. There is potential to develop it further for oral delivery of BCG vaccine.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The number of new chemical entities (NCE) is increasing every day after the introduction of combinatorial chemistry and high throughput screening to the drug discovery cycle. One third of these new compounds have aqueous solubility less than 20µg/mL [1]. Therefore, a great deal of interest has been forwarded to the salt formation technique to overcome solubility limitations. This study aims to improve the drug solubility of a Biopharmaceutical Classification System class II (BCS II) model drug (Indomethacin; IND) using basic amino acids (L-arginine, L-lysine and L-histidine) as counterions. Three new salts were prepared using freeze drying method and characterised by FT-IR spectroscopy, proton nuclear magnetic resonance ((1)HNMR), Differential Scanning Calorimetry (DSC) and Thermogravimetric analysis (TGA). The effect of pH on IND solubility was also investigated using pH-solubility profile. Both arginine and lysine formed novel salts with IND, while histidine failed to dissociate the free acid and in turn no salt was formed. Arginine and lysine increased IND solubility by 10,000 and 2296 fold, respectively. An increase in dissolution rate was also observed for the novel salts. Since these new salts have improved IND solubility to that similar to BCS class I drugs, IND salts could be considered for possible waivers of bioequivalence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Despite recent success, rapidly disintegrating lyophilized tablets still face problems of low mechanical strength and higher disintegration times resulting in poor patient compliance. The aim of the current work was to carry out a systematic study to understand the factors controlling mechanical properties of these formulations. The work investigated the influence of two bloom strengths of gelatin: low (60 bloom) and high (225 bloom) at different stock solution concentrations (2, 5, 7.5, and 10 %w/w). This was followed by investigation of addition of five saccharides (xylitol, glucose, trehalose, maltotriose and mannitol) at varied concentration range (10-80 %w/w) to decipher their influence on disintegration time, mechanical and thermal properties of the formulation. The results indicated that the disintegration time of the tablets dramatically decreased by decreasing the concentration and bloom strength of gelatin in the stock solution. However the mechanical properties of the tablets were mainly influenced by the concentration of gelatin rather than the bloom strength. The addition of saccharides resulted in enhancement of tablet properties and was concentration dependent. All the saccharides improved the fractubility of the tablets significantly at high concentration (equal or higher than 40% w/w). However, only high concentration (equal or higher than 40% w/w) of trehalose, maltotriose and mannitol significantly enhanced the hardness. Additionally, mannitol crytallised during freeze drying and consequently produced elegant tablets, whilst the other saccarides exhibited lyoprotectant activity as they were able to retain amorphous status. Based on the above findings, an optimized formulation was also successfully developed and characterized to deliver 100 microg dose of Clonidine HCl.