8 resultados para focal-plane-array image processors
em Aston University Research Archive
Resumo:
We present a novel approach for the optical manipulation of neutral atoms in annular light structures produced by the phenomenon of conical refraction occurring in biaxial optical crystals. For a beam focused to a plane behind the crystal, the focal plane exhibits two concentric bright rings enclosing a ring of null intensity called the Poggendorff ring. We demonstrate both theoretically and experimentally that the Poggendorff dark ring of conical refraction is confined in three dimensions by regions of higher intensity. We derive the positions of the confining intensity maxima and minima and discuss the application of the Poggendorff ring for trapping ultra-cold atoms using the repulsive dipole force of blue-detuned light. We give analytical expressions for the trapping frequencies and potential depths along both the radial and the axial directions. Finally, we present realistic numerical simulations of the dynamics of a 87Rb Bose-Einstein condensate trapped inside the Poggendorff ring which are in good agreement with corresponding experimental results.
Resumo:
In conical refraction, when a focused Gaussian beam passes along one of the optic axes of a biaxial crystal, it is transformed into a pair of concentric bright rings at the focal plane. We demonstrate both theoretically and experimentally that this transformation is hardly affected by partially blocking the Gaussian input beam with an obstacle. We analyze the influence of the size of the obstruction both on the transverse intensity pattern of the beam and on its state of polarization, which is shown to be very robust.
Resumo:
In conical refraction (CR), a focused Gaussian input beam passing through a biaxial crystal and parallel to one of the optic axes is transformed into a pair of concentric bright rings split by a dark (Poggendorff) ring at the focal plane. Here, we show the generation of a CR transverse pattern that does not present the Poggendorff fine splitting at the focal plane, i.e., it forms a single light ring. This light ring is generated from a nonhomogeneously polarized input light beam obtained by using a spatially inhomogeneous polarizer that mimics the characteristic CR polarization distribution. This polarizer allows modulating the relative intensity between the two CR light cones in accordance with the recently proposed dual-cone model of the CR phenomenon. We show that the absence of interfering rings at the focal plane is caused by the selection of one of the two CR cones. (C) 2015 Optical Society of America
Resumo:
Image segmentation is one of the most computationally intensive operations in image processing and computer vision. This is because a large volume of data is involved and many different features have to be extracted from the image data. This thesis is concerned with the investigation of practical issues related to the implementation of several classes of image segmentation algorithms on parallel architectures. The Transputer is used as the basic building block of hardware architectures and Occam is used as the programming language. The segmentation methods chosen for implementation are convolution, for edge-based segmentation; the Split and Merge algorithm for segmenting non-textured regions; and the Granlund method for segmentation of textured images. Three different convolution methods have been implemented. The direct method of convolution, carried out in the spatial domain, uses the array architecture. The other two methods, based on convolution in the frequency domain, require the use of the two-dimensional Fourier transform. Parallel implementations of two different Fast Fourier Transform algorithms have been developed, incorporating original solutions. For the Row-Column method the array architecture has been adopted, and for the Vector-Radix method, the pyramid architecture. The texture segmentation algorithm, for which a system-level design is given, demonstrates a further application of the Vector-Radix Fourier transform. A novel concurrent version of the quad-tree based Split and Merge algorithm has been implemented on the pyramid architecture. The performance of the developed parallel implementations is analysed. Many of the obtained speed-up and efficiency measures show values close to their respective theoretical maxima. Where appropriate comparisons are drawn between different implementations. The thesis concludes with comments on general issues related to the use of the Transputer system as a development tool for image processing applications; and on the issues related to the engineering of concurrent image processing applications.
Resumo:
The aim of this Interdisciplinary Higher Degrees project was the development of a high-speed method of photometrically testing vehicle headlamps, based on the use of image processing techniques, for Lucas Electrical Limited. Photometric testing involves measuring the illuminance produced by a lamp at certain points in its beam distribution. Headlamp performance is best represented by an iso-lux diagram, showing illuminance contours, produced from a two-dimensional array of data. Conventionally, the tens of thousands of measurements required are made using a single stationary photodetector and a two-dimensional mechanical scanning system which enables a lamp's horizontal and vertical orientation relative to the photodetector to be changed. Even using motorised scanning and computerised data-logging, the data acquisition time for a typical iso-lux test is about twenty minutes. A detailed study was made of the concept of using a video camera and a digital image processing system to scan and measure a lamp's beam without the need for the time-consuming mechanical movement. Although the concept was shown to be theoretically feasible, and a prototype system designed, it could not be implemented because of the technical limitations of commercially-available equipment. An alternative high-speed approach was developed, however, and a second prototype syqtem designed. The proposed arrangement again uses an image processing system, but in conjunction with a one-dimensional array of photodetectors and a one-dimensional mechanical scanning system in place of a video camera. This system can be implemented using commercially-available equipment and, although not entirely eliminating the need for mechanical movement, greatly reduces the amount required, resulting in a predicted data acquisiton time of about twenty seconds for a typical iso-lux test. As a consequence of the work undertaken, the company initiated an 80,000 programme to implement the system proposed by the author.
Resumo:
Visual perception is dependent on both light transmission through the eye and neuronal conduction through the visual pathway. Advances in clinical diagnostics and treatment modalities over recent years have increased the opportunities to improve the optical path and retinal image quality. Higher order aberrations and retinal straylight are two major factors that influence light transmission through the eye and ultimately, visual outcome. Recent technological advancements have brought these important factors into the clinical domain, however the potential applications of these tools and considerations regarding interpretation of data are much underestimated. The purpose of this thesis was to validate and optimise wavefront analysers and a new clinical tool for the objective evaluation of intraocular scatter. The application of these methods in a clinical setting involving a range of conditions was also explored. The work was divided into two principal sections: 1. Wavefront Aberrometry: optimisation, validation and clinical application The main findings of this work were: • Observer manipulation of the aberrometer increases variability by a factor of 3. • Ocular misalignment can profoundly affect reliability, notably for off-axis aberrations. • Aberrations measured with wavefront analysers using different principles are not interchangeable, with poor relationships and significant differences between values. • Instrument myopia of around 0.30D is induced when performing wavefront analysis in non-cyclopleged eyes; values can be as high as 3D, being higher as the baseline level of myopia decreases. Associated accommodation changes may result in relevant changes to the aberration profile, particularly with respect to spherical aberration. • Young adult healthy Caucasian eyes have significantly more spherical aberration than Asian eyes when matched for age, gender, axial length and refractive error. Axial length is significantly correlated with most components of the aberration profile. 2. Intraocular light scatter: Evaluation of subjective measures and validation and application of a new objective method utilising clinically derived wavefront patterns. The main findings of this work were: • Subjective measures of clinical straylight are highly repeatable. Three measurements are suggested as the optimum number for increased reliability. • Significant differences in straylight values were found for contact lenses designed for contrast enhancement compared to clear lenses of the same design and material specifications. Specifically, grey/green tints induced significantly higher values of retinal straylight. • Wavefront patterns from a commercial Hartmann-Shack device can be used to obtain objective measures of scatter and are well correlated with subjective straylight values. • Perceived retinal stray light was similar in groups of patients implanted with monofocal and multi focal intraocular lenses. Correlation between objective and subjective measurements of scatter is poor, possibly due to different illumination conditions between the testing procedures, or a neural component which may alter with age. Careful acquisition results in highly reproducible in vivo measures of higher order aberrations; however, data from different devices are not interchangeable which brings the accuracy of measurement into question. Objective measures of intraocular straylight can be derived from clinical aberrometry and may be of great diagnostic and management importance in the future.
Resumo:
Presentation Purpose:To relate structural change to functional change in age-related macular degeneration (AMD) in a cross-sectional population using fundus imaging and the visual field status. Methods:10 degree standard and SWAP visual fields and other standard functional clinical measures were acquired in 44 eyes of 27 patients at various stages of AMD, as well as fundus photographs. Retro-mode SLO images were captured in a subset of 29 eyes of 19 of the patients. Drusen area, measured by automated drusen segmentation software (Smith et al. 2005) was correlated with visual field data. Visual field defect position was compared to the position of the imaged drusen and deposits using custom software. Results:The effect of AMD stage on drusen area within the 6000µm was significant (One-way ANOVA: F = 17.231, p < 0.001), however the trend was not strong across all stages. There were significant linear relationships between visual field parameters and drusen area. The mean deviation (MD) declined by 3.00dB and 3.92dB for each log % drusen area for standard perimetry and SWAP, respectively. The visual field parameters of focal loss displayed the strongest correlations with drusen area. The number of pattern deviation (PD) defects increased by 9.30 and 9.68 defects per log % drusen area for standard perimetry and SWAP, respectively. Weaker correlations were found between drusen area and visual acuity, contrast sensitivity, colour vision and reading speed. 72.6% of standard PD defects and 65.2% of SWAP PD defects coincided with retinal signs of AMD on fundus photography. 67.5% of standard PD defects and 69.7% of SWAP PD defects coincided with deposits on retro-mode images. Conclusions:Perimetry exhibited a stronger relationship with drusen area than other measures of visual function. The structure-function relationship between visual field parameters and drusen area was linear. Overall the indices of focal loss had a stronger correlation with drusen area in SWAP than in standard perimetry. Visual field defects had a high coincidence proportion with retinal manifestations of AMD.Smith R.T. et al. (2005) Arch Ophthalmol 123:200-206.
Resumo:
Aim: To examine the use of image analysis to quantify changes in ocular physiology. Method: A purpose designed computer program was written to objectively quantify bulbar hyperaemia, tarsal redness, corneal staining and tarsal staining. Thresholding, colour extraction and edge detection paradigms were investigated. The repeatability (stability) of each technique to changes in image luminance was assessed. A clinical pictorial grading scale was analysed to examine the repeatability and validity of the chosen image analysis technique. Results: Edge detection using a 3 × 3 kernel was found to be the most stable to changes in image luminance (2.6% over a +60 to -90% luminance range) and correlated well with the CCLRU scale images of bulbar hyperaemia (r = 0.96), corneal staining (r = 0.85) and the staining of palpebral roughness (r = 0.96). Extraction of the red colour plane demonstrated the best correlation-sensitivity combination for palpebral hyperaemia (r = 0.96). Repeatability variability was <0.5%. Conclusions: Digital imaging, in conjunction with computerised image analysis, allows objective, clinically valid and repeatable quantification of ocular features. It offers the possibility of improved diagnosis and monitoring of changes in ocular physiology in clinical practice. © 2003 British Contact Lens Association. Published by Elsevier Science Ltd. All rights reserved.