9 resultados para fluorescein diacetate hydrolysis

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ionic liquids based on 1-butyl-3-methylimidazolium tetrafluoroborate (BmimBF4) and 1-butyl-3-methylimidazolium hexafluorophosphate (BmimPF6) were used as reusable alternatives to volatile organic solvents (VOCs) for ethylenediammonium diacetate (EDDA) catalyzed Gewald synthesis of 2-aminothiophenes. Significant rate enhancement and improvement of the yield were observed. The ionic liquids containing catalyst EDDA were recycled several times with no decreases in yields and reaction rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The room temperature ionic liquid, 1-n-butylpyridinium tetrafluoroborate (BPyBF4), is used as a “green“ recyclable solvent for the oxidative dimerisation of thioamides with phenyliodine(III) diacetate which provides a facile, efficient and environmentally benign method for the synthesis of 3,5-diaryl-1,2,4-thiadiazoles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The moisture and air stable ionic liquids 1-butyl-3-methylimidazonium tetrafluoroborate [bmim]BF4 and 1-butyl-3-methylimidazonium hexafluorophosphate [bmim]PF6 were used as ‘green' recyclable alternatives to volatile organic solvents (VOCs) for ethylenediammonium diacetate (EDDA) catalyzed Knoevenagel condensation between aldehydes or ketones with active methylene compounds. Both aldehydes and ketones gave satisfactory results. The ionic liquids containing catalyst EDDA were recycled several times with no decreases in yields and reaction rates. In the case of 2-hydroxybenzaldehyde, the reactions led to the formation of 3-substituted coumarins under standard reaction conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research was carried for an EC supported project that aimed to produce ethyl levulinate as a diesel miscible biofuel from biomass by acid hydrolysis. The objective of this research was to explore thermal conversion technologies to recover further diesel miscible biofuels and/or other valuable products from the remaining solid acid hydrolysis residues (AHR). AHR consists of mainly lignin and humins and contains up to 80% of the original energy in the biomass. Fast pyrolysis and pyrolytic gasification of this low volatile content AHR was unsuccessful. However, successful air gasification of AHR gave a low heating value gas for use in engines for power or heat with the aim of producing all the utility requirements in any commercial implementation of the ethyl levulinate production process. In addition, successful fast pyrolysis of the original biomass gave organic liquid yields of up to 63.9 wt.% (dry feed basis) comparable to results achieved using a standard hardwood. The fast pyrolysis liquid can be used as a fuel or upgraded to biofuels. A novel molybdenum carbide catalyst was tested in fast pyrolysis to explore the potential for upgrading. Although there was no deoxygenation, some bio-oil properties were improved including viscosity, pH and homogeneity through decreasing sugars and increasing furanics and phenolics. AHR gasification was explored in a batch gasifier with a comparison with the original biomass. Refractory and low volatile content AHR gave relatively low gas yields (74.21 wt.%), low tar yields (5.27 wt.%) and high solid yields (20.52 wt.%). Air gasification gave gas heating values of around 5MJ/NM3, which is a typical value, but limitations of the equipment available restricted the extent of process and product analysis. In order to improve robustness of AHR powder for screw feeding into gasifiers, a new densification technique was developed based on mixing powder with bio-oil and curing the mixture at 150°C to polymerise the bio-oil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To optimize anterior eye fluorescein viewing and image capture. Design: Prospective experimental investigation. Methods: The spectral radiance of ten different models of slit-lamp blue luminance and the spectral transmission of three barrier filters were measured. Optimal clinical instillation of fluorescein was evaluated by a comparison of four different instillation methods of fluorescein into 10 subjects. Two methods used a floret, and two used minims of different concentration. The resulting fluorescence was evaluated for quenching effects and efficiency over time. Results: Spectral radiance of the blue illumination typically had an average peak at 460 nm. Comparison between three slit-lamps of the same model showed a similar spectral radiance distribution. Of the slit-lamps examined, 8.3% to 50.6% of the illumination output was optimized for >80% fluorescein excitation, and 1.2% to 23.5% of the illumination overlapped with that emitted by the fluorophore. The barrier filters had an average cut-off at 510 to 520 nm. Quenching was observed for all methods of fluorescein instillation. The moistened floret and the 1% minim reached a useful level of fluorescence in on average ∼20s (∼2.5× faster than the saturated floret and 2% minim) and this lasted for ∼160 seconds. Conclusions: Most slit-lamps' blue light and yellow barrier filters are not optimal for fluorescein viewing and capture. Instillation of fluorescein using a moistened floret or 1% minim seems most clinically appropriate as lower quantities and concentrations of fluorescein improve the efficiency of clinical examination. © 2006 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural evidence has demonstrated that P-glycoprotein (P-gp) undergoes considerable conformational changes during catalysis, and these alterations are important in drug interaction. Knowledge of which regions in P-gp undergo conformational alterations will provide vital information to elucidate the locations of drug binding sites and the mechanism of coupling. A number of investigations have implicated transmembrane segment six (TM6) in drug-P-gp interactions, and a cysteine-scanning mutagenesis approach was directed to this segment. Introduction of cysteine residues into TM6 did not disturb basal or drug-stimulated ATPase activity per se. Under basal conditions the hydrophobic probe coumarin maleimide readily labeled all introduced cysteine residues, whereas the hydrophilic fluorescein maleimide only labeled residue Cys-343. The amphiphilic BODIPY-maleimide displayed a more complex labeling profile. The extent of labeling with coumarin maleimide did not vary during the catalytic cycle, whereas fluorescein maleimide labeling of F343C was lost after nucleotide binding or hydrolysis. BODIPY-maleimide labeling was markedly altered during the catalytic cycle and indicated that the adenosine 5'-(beta,gamma-imino)triphosphate-bound and ADP/vanadate-trapped intermediates were conformationally distinct. Our data are reconciled with a recent atomic scale model of P-gp and are consistent with a tilting of TM6 in response to nucleotide binding and ATP hydrolysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To examine the optimum time at which fluorescein patterns of gas permeable lenses (GPs) should be evaluated. METHODS: Aligned, 0.2mm steep and 0.2mm flat GPs were fitted to 17 patients (aged 20.6±1.1 years, 10 male). Fluorescein was applied to their upper temporal bulbar conjunctiva with a moistened fluorescein strip. Digital slit lamp images (CSO, Italy) at 10× magnification of the fluorescein pattern viewed with blue light through a yellow filter were captured every 15s. Fluorescein intensity in central, mid peripheral and edge regions of the superior, inferior, temporal and nasal quadrants of the lens were graded subjectively using a +2 to -2 scale and using ImageJ software on the simultaneously captured images. RESULTS: Subjectively graded and objectively image analysed fluorescein intensity changed with time (p<0.001), lens region (centre, mid-periphery and edge: p<0.05) and there was interaction between lens region with lens fit (p<0.001). For edge band width, there was a significant effect of time (F=118.503, p<0.001) and lens fit (F=5.1249, p=0.012). The expected alignment, flat and steep fitting patterns could be seen from approximately after 30 to 180s subjectively and 15 to 105s in captured images. CONCLUSION: Although the stability of fluorescein intensity can start to decline in as little as 45s post fluorescein instillation, the diagnostic pattern of alignment, steep or flat fit is seen in each meridian by subjective observation from about 30s to 3min indicating this is the most appropriate time window to evaluate GP lenses in clinical practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetic parameters of the pyrolysis of miscanthus and its acid hydrolysis residue (AHR) were determined using thermogravimetric analysis (TGA). The AHR was produced at the University of Limerick by treating miscanthus with 5 wt.% sulphuric acid at 175 °C as representative of a lignocellulosic acid hydrolysis product. For the TGA experiments, 3 to 6 g of sample, milled and sieved to a particle size below 250 μm, were placed in the TGA ceramic crucible. The experiments were carried out under non-isothermal conditions heating the samples from 50 to 900 °C at heating rates of 2.5, 5, 10, 17 and 25 °C/min. The activation energy (EA) of the decomposition process was determined from the TGA data by differential analysis (Friedman) and three isoconversional methods of integral analysis (Kissinger–Akahira–Sunose, Ozawa–Flynn–Wall, Vyazovkin). The activation energy ranged from 129 to 156 kJ/mol for miscanthus and from 200 to 376 kJ/mol for AHR increasing with increasing conversion. The reaction model was selected using the non-linear least squares method and the pre-exponential factor was calculated from the Arrhenius approximation. The results showed that the best fitting reaction model was the third order reaction for both feedstocks. The pre-exponential factor was in the range of 5.6 × 1010 to 3.9 × 10+ 13 min− 1 for miscanthus and 2.1 × 1016 to 7.7 × 1025 min− 1 for AHR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research presented in this thesis was developed as part of DIBANET, an EC funded project aiming to develop an energetically self-sustainable process for the production of diesel miscible biofuels (i.e. ethyl levulinate) via acid hydrolysis of selected biomass feedstocks. Three thermal conversion technologies, pyrolysis, gasification and combustion, were evaluated in the present work with the aim of recovering the energy stored in the acid hydrolysis solid residue (AHR). Mainly consisting of lignin and humins, the AHR can contain up to 80% of the energy in the original feedstock. Pyrolysis of AHR proved unsatisfactory, so attention focussed on gasification and combustion with the aim of producing heat and/or power to supply the energy demanded by the ethyl levulinate production process. A thermal processing rig consisting on a Laminar Entrained Flow Reactor (LEFR) equipped with solid and liquid collection and online gas analysis systems was designed and built to explore pyrolysis, gasification and air-blown combustion of AHR. Maximum liquid yield for pyrolysis of AHR was 30wt% with volatile conversion of 80%. Gas yield for AHR gasification was 78wt%, with 8wt% tar yields and conversion of volatiles close to 100%. 90wt% of the AHR was transformed into gas by combustion, with volatile conversions above 90%. 5volO2%-95vol%N2 gasification resulted in a nitrogen diluted, low heating value gas (2MJ/m3). Steam and oxygen-blown gasification of AHR were additionally investigated in a batch gasifier at KTH in Sweden. Steam promoted the formation of hydrogen (25vol%) and methane (14vol%) improving the gas heating value to 10MJ/m3, below the typical for steam gasification due to equipment limitations. Arrhenius kinetic parameters were calculated using data collected with the LEFR to provide reaction rate information for process design and optimisation. Activation energy (EA) and pre-exponential factor (ko in s-1) for pyrolysis (EA=80kJ/mol, lnko=14), gasification (EA=69kJ/mol, lnko=13) and combustion (EA=42kJ/mol, lnko=8) were calculated after linearly fitting the data using the random pore model. Kinetic parameters for pyrolysis and combustion were also determined by dynamic thermogravimetric analysis (TGA), including studies of the original biomass feedstocks for comparison. Results obtained by differential and integral isoconversional methods for activation energy determination were compared. Activation energy calculated by the Vyazovkin method was 103-204kJ/mol for pyrolysis of untreated feedstocks and 185-387kJ/mol for AHRs. Combustion activation energy was 138-163kJ/mol for biomass and 119-158 for AHRs. The non-linear least squares method was used to determine reaction model and pre-exponential factor. Pyrolysis and combustion of biomass were best modelled by a combination of third order reaction and 3 dimensional diffusion models, while AHR decomposed following the third order reaction for pyrolysis and the 3 dimensional diffusion for combustion.