3 resultados para fluid characterization
em Aston University Research Archive
Resumo:
Experimental and theoretical methods have been used to study zeolite structures, properties and applications as membranes for separation purposes. Thin layers of silicalite-1 and Na-LTA zeolites have been synthesised onto carbon-graphite supports using a hydrothermal synthesis procedure. The separation behaviour of the composite membranes was characterized by gas permeation studies of pure, binary and ternary mixtures of methane, ethane and propane. The influence of temperature and feed gas mixture composition on the separation and selectivity performance of the membranes was also investigated. It was found that the silicalite-1 composite membranes synthesised onto the 4 hour oxidized carbon-graphite supports showed the most promising separation behaviour of all the composite membranes investigated. Molecular simulation methods were used to gain an understanding of how hydrocarbon molecules behave both within the pores and on the surfaces of silicalite-1, mordenite and LTA zeolites. Molecular dynamic simulations were used to investigate the influence of temperature and molecular loadings on the diffusional behaviour of hydrocarbons in zeolites. Both hydroxylated (surface termination with hydroxyl groups) and non-hydroxylated silicalite-1 and Na-mordenite surfaces were generated. For both zeolites the most stable surfaces correspond to the {010} surface. For the silicalite-1 {010} surface the adsorption of hydrocarbons and molecular water onto the hydroxylated surface showed a favourable exothermic adsorption process compared to adsorption on the non-hydroxylated surface. With the Na-mordenite {010} surface the adsorption of hydrocarbons onto both the hydroxylated and non-hydroxylated surfaces had a combination of favourable and non-favourable adsorption energies, while the adsorption of molecular water onto both types of surface was found to be a favourable adsorption process.
Resumo:
Although well known for delivering various pharmaceutical agents, liposomes can be prepared to entrap gas rather than aqueous media and have the potential to be used as pressure probes in magnetic resonance imaging (MRI). Using these gas-filled liposomes (GFL) as tracers, MRI imaging of pressure regions of a fluid flowing through a porous medium could be established. This knowledge can be exploited to enhance recovery of oil from the porous rock regions within oil fields. In the preliminary studies, we have optimized the lipid composition of GFL prepared using a simple homogenization technique and investigated key physico-chemical characteristics (size and the physical stability) and their efficacy as pressure probes. In contrast to the liposomes possessing an aqueous core which are prepared at temperatures above their phase transition temperature (Tc), homogenization of the phospholipids such as 1,2-dipalmitoyl-sn-glycero-3- phosphocholine (DPPC) or 1,2-distearoyl-sn-glycero-3-phosphocoline (DSPC) in aqueous medium below their Tc was found to be crucial in formation of stable GFL. DSPC based preparations yielded a GFL volume of more than five times compared to their DPPC counter part. Although the initial vesicle sizes of both DSPC and DPPC based GFL were about 10 μm, after 7 days storage at 25°C, the vesicle sizes of both formulations significantly (p < 0.05) increased to 28.3 ± 0.3 μm and 12.3 ± 1.0 μm, respectively. When the DPPC preparation was supplemented with cholesterol at a 1:0.5 or 1:1 molar ratio, significantly (p < 0.05) larger vesicles were formed (12-13 μm), however, compared to DPPC only vesicles, both cholesterol supplemented formulations displayed enhanced stability on storage indicating a stabilizing effect of cholesterol on these gas-filled vesicles. In order to induce surface charge on the GFL, DPPC and cholesterol (1: 0.5 molar ratio) liposomes were supplemented with a cationic surfactant, stearylamine, at a molar ratio of 0.25 or 0.125. Interestingly, the ζ potential values remained around neutrality at both stearylamine ratios suggesting the cationic surfactant was not incorporated within the bilayers of the GFL. Microscopic analysis of GFL confirmed the presence of spherical structures with a size distribution between 1-8 μm. This study has identified that DSPC based GFL in aqueous medium dispersed in 2% w/v methyl cellulose although yielded higher vesicle sizes over time were most stable under high pressures exerted in MRI. Copyright © Informa Healthcare USA, Inc.
Resumo:
Incorporation of the glycolipid trehalose 6,6′-dibehenate (TDB) into cationic liposomes composed of the quaternary ammonium compound dimethyldioctadecylammonium (DDA) produce an adjuvant system which induces a powerful cell-mediated immune response and a strong antibody response, desirable for a high number of disease targets. We have used differential scanning calorimetry (DSC) to investigate the effect of TDB on the gel-fluid phase transition of DDA liposomes and to demonstrate that TDB is incorporated into DDA liposome bilayers. Transmission Electron Microscopy (TEM) and cryo-TEM confirmed that liposomes were formed when a lipid film of DDA containing small amounts of TDB was hydrated in an aqueous buffer solution at physiological pH. Furthermore, time development of particle size and zeta potential of DDA liposomes incorporating TDB during storage at 4°C and 25°C, indicates that TDB effectively stabilizes the DDA liposomes. Immunization of mice with the mycobacterial fusion protein Ag85B-ESAT-6 in DDA-TDB liposomes induced a strong, specific Th1 type immune response characterized by substantial production of the interferon-γ cytokine and high levels of IgG2b isotype antibodies. The lymphocyte subset releasing the interferon-γ was identified as CD4 T cells.