13 resultados para flims and coatings

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The guide to spectacle lenses and coatings and tints available in the UK. The Ophthalmic Lenses Availability Guide aims to collate information from lens manufacturers in the UK enabling practitioners to rapidly locate lenses suitable for your patients. Twenty lens and coating manufacturers are represented in the Guide which consists of three sections; the availability index, manufacturer's data and lens data files. In the 2008 edition, the availability index has been updated; arranging lenses by type and then in ascending order of refractive index. Additionally, for progressive power lenses, the corridor length or fitting height is included allowing the practitioner to more rapidly identify a lens which meets the fitting requirements of a selected frame. Further technical information is provided for a selected by going to the appropriate page number in the manufacturer’s section. The lens data files contain additional information on the optical properties of materials, tints and coatings and a summary list of hidden markings on progressive power lenses enabling the practitioner to identify the lens a patient is currently wearing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nitride materials and coatings have attracted extensive research interests for various applications in advanced nuclear reactors due to their unique combination of physical properties, including high temperature stability, excellent corrosion resistance, superior mechanical property and good thermal conductivity. In this paper, the ion irradiation effects in nanocrystalline TiN coatings as a function of grain size are reported. TiN thin films (thickness of 100 nm) with various grain sizes (8-100 nm) were prepared on Si substrates by a pulsed laser deposition technique. All the samples were irradiated with He ions to high fluences at room temperature. Transmission electron microscopy (TEM) and high resolution TEM on the ion-irradiated samples show that damage accumulation in the TiN films reduces as the grain size reduces. Electrical resistivity of the ion-irradiated films increases slightly compared with the as-deposited ones. These observations demonstrate a good radiation-tolerance property of nanocrystalline TiN films. © 2007 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An investigation has been made of the microstructural stability of aluminide diffusion coatings during post-coating thermal exposure. This study has employed edge-on transmission electron microscopy to examine high-activity pack aluminised single crystals of a gamma prime strengthened nickel-base superalloy. The influence of exposure temperature, duration and atmosphere as well as the initial coating thickness has been assessed. Two major processes have been found to contribute to microstructural changes in the coating. These are, firstly, the transformation of the coating matrix (β-phase, nominally NiAl) to other Ni-Al based phases, especially γ' (nominally Ni3(Al, Ti)) and, secondly, the precipitation of chromium containing phases. The work has enabled the roles of three processes contributing to γ formation, namely: oxidation of the coating surface, interdiffusion with the substrate and ageing of the coating, to be understood. In addition, the factors leading to the formation of a sequence of chromium-containing phases have been identified.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The electrocopolymerization of carbazole and acrylamide on highly oriented pyrolytic graphite (HOPG) from ACN solutions via cyclovoltammetry (CV) was studied in order to evaluate the possibility to deposit uniform and thin but pinhole-free and still reactive coatings onto graphite-like substrates. The morphology of the coatings was investigated using atomic force microscopy and the coating thicknesses and optical parameters were measured using ellipsometry. It was found that under the chosen conditions thin (coating thickness hf>180 nm) and relatively smooth (root mean square surface roughness RMS<150 nm) P(Cz-co-AAm)-coatings exhibiting a uniform globuoidal morphology can be deposited onto graphite. From a certain coating thickness (hf>50 nm) no pinholes could be detected. It was found that the thickness of the deposited coatings increases almost linearly with increasing number of CV-cycles while keeping all other experimental parameters (scan rate and comonomer concentration ratio) constant. No influence of the comonomer concentration ratio on the film thickness and coating appearance could be observed, however, at quite low initial concentrations. However, the CV-scanning rate has quite a significant influence on the thickness of the deposited coatings. Higher scan rates (100 mV/s) result in thin (hf≈22 nm) coatings whereas at lower scan rates (<50 mV/s) coatings with thicknesses of approximately 50 nm were obtained. The optical coating parameters (the refractive index n and extinction coefficient k) seem to be independent of the deposition parameters and therefore averaged values of n̄=1.54±0.03 and k̄=0.08±0.03 were obtained.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Steel is the most widely used material in engineering for its cost/performance ratio and coatings are routinely applied on its surface to further improve its properties. Diamond coated steel parts are an option for many demanding industrial applications through prolonging the lifetime of steel parts, enhancement of tool performance as well as the reduction of wear rates. Direct deposition of diamond on steel using conventional chemical vapour deposition (CVD) processes is known to give poor results due to the preferential formation of amorphous carbon on iron, nickel and other elements as well as stresses induced from the significant difference in the thermal expansion coefficients of those materials. This article reports a novel approach of deposition of nanocrystalline diamond coatings on high-speed steel (M42) substrates using a multi-structured molybdenum (Mo) - tungsten (W) interlayer to form steel/Mo/Mo-W/W/diamond sandwich structures which overcome the adhesion problem related to direct magnetron sputtering deposition of pure tungsten. Surface, interface and tribology properties were evaluated to understand the role of such an interlayer structure. The multi-structured Mo-W interlayer has been proven to improve the adhesion between diamond films and steel substrates by acting as an effective diffusion barrier during the CVD diamond deposition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Surface modification by means of nanostructures is of interest to enhance boiling heat transfer in various applications including the organic Rankine cycle (ORC). With the goal of obtaining rough and dense aluminum oxide (Al2O3) nanofilms, the optimal combination of process parameters for electrophoretic deposition (EPD) based on the uniform design (UD) method is explored in this paper. The detailed procedures for the EPD process and UD method are presented. Four main influencing conditions controlling the EPD process were identified as nanofluid concentration, deposition time, applied voltage and suspension pH. A series of tests were carried out based on the UD experimental design. A regression model and statistical analysis were applied to the results. Sensitivity analyses of the effect of the four main parameters on the roughness and deposited mass of Al2O3 films were also carried out. The results showed that Al2O3 nanofilms were deposited compactly and uniformly on the substrate. Within the range of the experiments, the preferred combination of process parameters was determined to be nanofluid concentration of 2 wt.%, deposition time of 15 min, applied voltage of 23 V and suspension pH of 3, yielding roughness and deposited mass of 520.9 nm and 161.6 × 10− 4 g/cm2, respectively. A verification experiment was carried out at these conditions and gave values of roughness and deposited mass within 8% error of the expected ones as determined from the UD approach. It is concluded that uniform design is useful for the optimization of electrophoretic deposition requiring only 7 tests compared to 49 using the orthogonal design method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The work presented in this thesis describes an investigation into the production and properties of thin amorphous C films, with and without Cr doping, as a low wear / friction coating applicable to MEMS and other micro- and nano-engineering applications. Firstly, an assessment was made of the available testing techniques. Secondly, the optimised test methods were applied to a series of sputtered films of thickness 10 - 2000 nm in order to: (i) investigate the effect of thickness on the properties of coatingslcoating process (ii) investigate fundamental tribology at the nano-scale and (iii) provide a starting point for nanotribological coating optimisation at ultra low thickness. The use of XPS was investigated for the determination of Sp3/Sp2 carbon bonding. Under C 1s peak analysis, significant errors were identified and this was attributed to the absence of sufficient instrument resolution to guide the component peak structure (even with a high resolution instrument). A simple peak width analysis and correlation work with C KLL D value confirmed the errors. The use of XPS for Sp3/Sp2 was therefore limited to initial tentative estimations. Nanoindentation was shown to provide consistent hardness and reduced modulus results with depth (to < 7nm) when replicate data was suitably statistically processed. No significant pile-up or cracking of the films was identified under nanoindentation. Nanowear experimentation by multiple nanoscratching provided some useful information, however the conditions of test were very different to those expect for MEMS and micro- / nano-engineering systems. A novel 'sample oscillated nanoindentation' system was developed for testing nanowear under more relevant conditions. The films were produced in an industrial production coating line. In order to maximise the available information and to take account of uncontrolled process variation a statistical design of experiment procedure was used to investigate the effect of four key process control parameters. Cr doping was the most significant control parameter at all thicknesses tested and produced a softening effect and thus increased nanowear. Substrate bias voltage was also a significant parameter and produced hardening and a wear reducing effect at all thicknesses tested. The use of a Cr adhesion layer produced beneficial results at 150 nm thickness, but was ineffective at 50 nm. Argon flow to the coating chamber produced a complex effect. All effects reduced significantly with reducing film thickness. Classic fretting wear was produced at low amplitude under nanowear testing. Reciprocating sliding was produced at higher amplitude which generated three body abrasive wear and this was generally consistent with the Archard model. Specific wear rates were very low (typically 10-16 - 10-18 m3N-1m-1). Wear rates reduced exponentially with reduced film thickness and below (approx.) 20 nm, thickness was identified as the most important control of wear.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ion implantation modifies the surface composition and properties of materials by bombardment with high energy ions. The low temperature of the process ensures the avoidance of distortion and degradation of the surface or bulk mechanical properties of components. In the present work nitrogen ion implantation at 90 keV and doses above 1017 ions/cm2 has been carried out on AISI M2, D2 and 420 steels and engineering coatings such as hard chromium, electroless Ni-P and a brush plated Co-W alloy. Evaluation of wear and frictional properties of these materials was performed with a lubricated Falex wear test at high loads up to 900 N and a dry pin-on-disc apparatus at loads up to 40 N. It was found that nitrogen implantation reduced the wear of AISI 420 stainless steel by a factor of 2.5 under high load lubricated conditions and by a factor of 5.5 in low load dry testing. Lower but significant reductions in wear were achieved for AISI M2 and D2 steels. Wear resistance of coating materials was improved by up to 4 times in lubricated wear of hard Cr coatings implanted at the optimum dose but lower improvements were obtained for the Co-W alloy coating. However, hardened electroless Ni-P coatings showed no enhancement in wear properties. The benefits obtained in wear behaviour for the above materials were generally accompanied by a significant decrease in the running-in friction. Nitrogen implantation hardened the surface of steels and Cr and Co-W coatings. An ultra-microhardness technique showed that the true hardness of implanted layers was greater than the values obtained by conventional micro-hardness methods, which often result in penetration below the implanted depth. Scanning electron microscopy revealed that implantation reduced the ploughing effect during wear and a change in wear mechanism from an abrasive-adhesive type to a mild oxidative mode was evident. Retention of nitrogen after implantation was studied by Nuclear Reaction Analysis and Auger Electron Spectroscopy. It was shown that maximum nitrogen retention occurs in hard Cr coatings and AISI 420 stainless steel, which explains the improvements obtained in wear resistance and hardness. X-ray photoelectron spectroscopy on these materials revealed that nitrogen is almost entirely bound to Cr, forming chromium nitrides. It was concluded that nitrogen implantation at 90 keV and doses above 3x1017 ions/cm2 produced the most significant improvements in mechanical properties in materials containing nitride formers by precipitation strengthening, improving the load bearing capacity of the surface and changing the wear mechanism from adhesive-abrasive to oxidative.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Constant load, progressive load and multipass nanoscratch (nanowear) tests were carried out on 500 and 1500 nm TiN coatings on M42 steel chosen as model systems. The influences of film thickness, coating roughness, scratch direction relative to the grinding grooves on the critical load in the progressive load test and number of cycles to failure in the wear test have been determined. Progress towards the development of a suitable methodology for determining the scratch hardness from nanoscratch tests is discussed. © 2011 W. S. Maney & Son Ltd.