8 resultados para fixed-point arithmetic

em Aston University Research Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We analyse the dynamics of a number of second order on-line learning algorithms training multi-layer neural networks, using the methods of statistical mechanics. We first consider on-line Newton's method, which is known to provide optimal asymptotic performance. We determine the asymptotic generalization error decay for a soft committee machine, which is shown to compare favourably with the result for standard gradient descent. Matrix momentum provides a practical approximation to this method by allowing an efficient inversion of the Hessian. We consider an idealized matrix momentum algorithm which requires access to the Hessian and find close correspondence with the dynamics of on-line Newton's method. In practice, the Hessian will not be known on-line and we therefore consider matrix momentum using a single example approximation to the Hessian. In this case good asymptotic performance may still be achieved, but the algorithm is now sensitive to parameter choice because of noise in the Hessian estimate. On-line Newton's method is not appropriate during the transient learning phase, since a suboptimal unstable fixed point of the gradient descent dynamics becomes stable for this algorithm. A principled alternative is to use Amari's natural gradient learning algorithm and we show how this method provides a significant reduction in learning time when compared to gradient descent, while retaining the asymptotic performance of on-line Newton's method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We develop and study the concept of dataflow process networks as used for exampleby Kahn to suit exact computation over data types related to real numbers, such as continuous functions and geometrical solids. Furthermore, we consider communicating these exact objectsamong processes using protocols of a query-answer nature as introduced in our earlier work. This enables processes to provide valid approximations with certain accuracy and focusing on certainlocality as demanded by the receiving processes through queries. We define domain-theoretical denotational semantics of our networks in two ways: (1) directly, i. e. by viewing the whole network as a composite process and applying the process semantics introduced in our earlier work; and (2) compositionally, i. e. by a fixed-point construction similarto that used by Kahn from the denotational semantics of individual processes in the network. The direct semantics closely corresponds to the operational semantics of the network (i. e. it iscorrect) but very difficult to study for concrete networks. The compositional semantics enablescompositional analysis of concrete networks, assuming it is correct. We prove that the compositional semantics is a safe approximation of the direct semantics. Wealso provide a method that can be used in many cases to establish that the two semantics fully coincide, i. e. safety is not achieved through inactivity or meaningless answers. The results are extended to cover recursively-defined infinite networks as well as nested finitenetworks. A robust prototype implementation of our model is available.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider the problem of stable determination of a harmonic function from knowledge of the solution and its normal derivative on a part of the boundary of the (bounded) solution domain. The alternating method is a procedure to generate an approximation to the harmonic function from such Cauchy data and we investigate a numerical implementation of this procedure based on Fredholm integral equations and Nyström discretization schemes, which makes it possible to perform a large number of iterations (millions) with minor computational cost (seconds) and high accuracy. Moreover, the original problem is rewritten as a fixed point equation on the boundary, and various other direct regularization techniques are discussed to solve that equation. We also discuss how knowledge of the smoothness of the data can be used to further improve the accuracy. Numerical examples are presented showing that accurate approximations of both the solution and its normal derivative can be obtained with much less computational time than in previous works.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider the suppression of spatiotemporal chaos in the complex GinzburgLandau equation by a combined global and local time-delay feedback. Feedback terms are implemented as a control scheme, i.e., they are proportional to the difference between the time-delayed state of the system and its current state. We perform a linear stability analysis of uniform oscillations with respect to space-dependent perturbations and compare with numerical simulations. Similarly, for the fixed-point solution that corresponds to amplitude death in the spatially extended system, a linear stability analysis with respect to space-dependent perturbations is performed and complemented by numerical simulations. © 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis we present an approach to automated verification of floating point programs. Existing techniques for automated generation of correctness theorems are extended to produce proof obligations for accuracy guarantees and absence of floating point exceptions. A prototype automated real number theorem prover is presented, demonstrating a novel application of function interval arithmetic in the context of subdivision-based numerical theorem proving. The prototype is tested on correctness theorems for two simple yet nontrivial programs, proving exception freedom and tight accuracy guarantees automatically. The prover demonstrates a novel application of function interval arithmetic in the context of subdivision-based numerical theorem proving. The experiments show how function intervals can be used to combat the information loss problems that limit the applicability of traditional interval arithmetic in the context of hard real number theorem proving.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the random channel access mechanism specified in the IEEE 802.16 standard for the uplink traffic in a Point-to-MultiPoint (PMP) network architecture. An analytical model is proposed to study the impacts of the channel access parameters, bandwidth configuration and piggyback policy on the performance. The impacts of physical burst profile and non-saturated network traffic are also taken into account in the model. Simulations validate the proposed analytical model. It is observed that the bandwidth utilization can be improved if the bandwidth for random channel access can be properly configured according to the channel access parameters, piggyback policy and network traffic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

IEEE 802.16 standard specifies two contention based bandwidth request schemes working with OFDM physical layer specification in point-to-multipoint (PMP) architecture, the mandatory one used in region-full and the optional one used in region-focused. This letter presents a unified analytical model to study the bandwidth efficiency and channel access delay performance of the two schemes. The impacts of access parameters, available bandwidth and subchannelization have been taken into account. The model is validated by simulations. The mandatory scheme is observed to perform closely to the optional one when subchannelization is active for both schemes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The focus of our work is the verification of tight functional properties of numerical programs, such as showing that a floating-point implementation of Riemann integration computes a close approximation of the exact integral. Programmers and engineers writing such programs will benefit from verification tools that support an expressive specification language and that are highly automated. Our work provides a new method for verification of numerical software, supporting a substantially more expressive language for specifications than other publicly available automated tools. The additional expressivity in the specification language is provided by two constructs. First, the specification can feature inclusions between interval arithmetic expressions. Second, the integral operator from classical analysis can be used in the specifications, where the integration bounds can be arbitrary expressions over real variables. To support our claim of expressivity, we outline the verification of four example programs, including the integration example mentioned earlier. A key component of our method is an algorithm for proving numerical theorems. This algorithm is based on automatic polynomial approximation of non-linear real and real-interval functions defined by expressions. The PolyPaver tool is our implementation of the algorithm and its source code is publicly available. In this paper we report on experiments using PolyPaver that indicate that the additional expressivity does not come at a performance cost when comparing with other publicly available state-of-the-art provers. We also include a scalability study that explores the limits of PolyPaver in proving tight functional specifications of progressively larger randomly generated programs. © 2014 Springer International Publishing Switzerland.