31 resultados para finite-time stability
em Aston University Research Archive
Resumo:
Three different stoichiometric forms of RbMn[Fe(CN) ]y·zHO [x = 0.96, y = 0.98, z = 0.75 (1); x = 0.94, y = 0.88, z = 2.17 (2); x = 0.61, y = 0.86, z = 2.71 (3)] Prussian blue analogues were synthesized and investigated by magnetic, calorimetric, Raman spectroscopic, X-ray diffraction, and Fe Mössbauer spectroscopic methods. Compounds 1 and 2 show a hysteresis loop between the high-temperature (HT) Fe(S = 1/2)-CN-Mn(S = 5/2) and the low-temperature (LT) Fe(S = 0)-CN-Mn(S = 2) forms of 61 and 135 K width centered at 273 and 215 K, respectively, whereas the third compound remains in the HT phase down to 5 K. The splitting of the quadrupolar doublets in the Fe Mössbauer spectra reveal the electron-transfer-active centers. Refinement of the X-ray powder diffraction profiles shows that electron-transfer-active materials have the majority of the Rb ions on only one of the two possible interstitial sites, whereas nonelectron-transfer-active materials have the Rb ions equally distributed. Moreover, the stability of the compounds with time and following heat treatment is also discussed. © Wiley-VCH Verlag GmbH & Co. KGaA, 2009.
Resumo:
The links between childhood eating behaviours and parental feeding practices are well-established in younger children, but there is a lack of research examining these variables in a preadolescent age group, particularly from the child's perspective, and longitudinally. This study firstly aimed to examine the continuity and stability of preadolescent perceptions of their parents' controlling feeding practices (pressure to eat and restriction) over a 12 month period. The second aim was to explore if perceptions of parental feeding practices moderated the relationship between preadolescents' eating behaviours longitudinally. Two hundred and twenty nine preadolescents (mean age at recruitment 8.73 years) completed questionnaires assessing their eating behaviours and their perceptions of parental feeding practices at two time points, 12 months apart (T1 and T2). Preadolescents' perceptions of their parental feeding practices remained stable. Perceptions of restriction and pressure to eat were continuous. Perceptions of parental pressure to eat and restriction significantly moderated the relationships between eating behaviours at T1 and T2. The findings from this study suggest that in a preadolescent population, perceptions of parental pressure to eat and restriction of food may exacerbate the development of problematic eating behaviours.
Resumo:
The present empirical investigation had a 3-fold purpose: (a) to cross-validate L. R. Offermann, J. K. Kennedy, and P. W. Wirtz's (1994) scale of Implicit Leadership Theories (ILTs) in several organizational settings and to further provide a shorter scale of ILTs in organizations; (b) to assess the generalizability of ILTs across different employee groups, and (c) to evaluate ILTs' change over time. Two independent samples were used for the scale validation (N 1 = 500 and N 2 = 439). A 6-factor structure (Sensitivity, Intelligence, Dedication, Dynamism, Tyranny, and Masculinity) was found to most accurately represent ILTs in organizational settings. Regarding the generalizability of ILTs, although the 6-factor structure was consistent across different employee groups, there was only partial support for total factorial invariance. Finally, evaluation of gamma, beta, and alpha change provided support for ILTs' stability over time.
Resumo:
This thesis demonstrates that the use of finite elements need not be confined to space alone, but that they may also be used in the time domain, It is shown that finite element methods may be used successfully to obtain the response of systems to applied forces, including, for example, the accelerations in a tall structure subjected to an earthquake shock. It is further demonstrated that at least one of these methods may be considered to be a practical alternative to more usual methods of solution. A detailed investigation of the accuracy and stability of finite element solutions is included, and methods of applications to both single- and multi-degree of freedom systems are described. Solutions using two different temporal finite elements are compared with those obtained by conventional methods, and a comparison of computation times for the different methods is given. The application of finite element methods to distributed systems is described, using both separate discretizations in space and time, and a combined space-time discretization. The inclusion of both viscous and hysteretic damping is shown to add little to the difficulty of the solution. Temporal finite elements are also seen to be of considerable interest when applied to non-linear systems, both when the system parameters are time-dependent and also when they are functions of displacement. Solutions are given for many different examples, and the computer programs used for the finite element methods are included in an Appendix.
Resumo:
We introduce a discrete-time fibre channel model that provides an accurate analytical description of signal-signal and signal-noise interference with memory defined by the interplay of nonlinearity and dispersion. Also the conditional pdf of signal distortion, which captures non-circular complex multivariate symbol interactions, is derived providing the necessary platform for the analysis of channel statistics and capacity estimations in fibre optic links.
Resumo:
We complement recent advances in thermodynamic limit analyses of mean on-line gradient descent learning dynamics in multi-layer networks by calculating fluctuations possessed by finite dimensional systems. Fluctuations from the mean dynamics are largest at the onset of specialisation as student hidden unit weight vectors begin to imitate specific teacher vectors, increasing with the degree of symmetry of the initial conditions. In light of this, we include a term to stimulate asymmetry in the learning process, which typically also leads to a significant decrease in training time.
Resumo:
Liposomes have been imaged using a plethora of techniques. However, few of these methods offer the ability to study these systems in their natural hydrated state without the requirement of drying, staining, and fixation of the vesicles. However, the ability to image a liposome in its hydrated state is the ideal scenario for visualization of these dynamic lipid structures and environmental scanning electron microscopy (ESEM), with its ability to image wet systems without prior sample preparation, offers potential advantages to the above methods. In our studies, we have used ESEM to not only investigate the morphology of liposomes and niosomes but also to dynamically follow the changes in structure of lipid films and liposome suspensions as water condenses on to or evaporates from the sample. In particular, changes in liposome morphology were studied using ESEM in real time to investigate the resistance of liposomes to coalescence during dehydration thereby providing an alternative assay of liposome formulation and stability. Based on this protocol, we have also studied niosome-based systems and cationic liposome/DNA complexes. Copyright © Informa Healthcare.
Resumo:
The research carried out in this thesis was mainly concerned with the effects of large induction motors and their transient performance in power systems. Computer packages using the three phase co-ordinate frame of reference were developed to simulate the induction motor transient performance. A technique using matrix algebra was developed to allow extension of the three phase co-ordinate method to analyse asymmetrical and symmetrical faults on both sides of the three phase delta-star transformer which is usually required when connecting large induction motors to the supply system. System simulation, applying these two techniques, was used to study the transient stability of a power system. The response of a typical system, loaded with a group of large induction motors, two three-phase delta-star transformers, a synchronous generator and an infinite system was analysed. The computer software developed to study this system has the advantage that different types of fault at different locations can be studied by simple changes in input data. The research also involved investigating the possibility of using different integrating routines such as Runge-Kutta-Gill, RungeKutta-Fehlberg and the Predictor-Corrector methods. The investigation enables the reduction of computation time, which is necessary when solving the induction motor equations expressed in terms of the three phase variables. The outcome of this investigation was utilised in analysing an introductory model (containing only minimal control action) of an isolated system having a significant induction motor load compared to the size of the generator energising the system.
Resumo:
In this thesis various mathematical methods of studying the transient and dynamic stabiIity of practical power systems are presented. Certain long established methods are reviewed and refinements of some proposed. New methods are presented which remove some of the difficulties encountered in applying the powerful stability theories based on the concepts of Liapunov. Chapter 1 is concerned with numerical solution of the transient stability problem. Following a review and comparison of synchronous machine models the superiority of a particular model from the point of view of combined computing time and accuracy is demonstrated. A digital computer program incorporating all the synchronous machine models discussed, and an induction machine model, is described and results of a practical multi-machine transient stability study are presented. Chapter 2 reviews certain concepts and theorems due to Liapunov. In Chapter 3 transient stability regions of single, two and multi~machine systems are investigated through the use of energy type Liapunov functions. The treatment removes several mathematical difficulties encountered in earlier applications of the method. In Chapter 4 a simple criterion for the steady state stability of a multi-machine system is developed and compared with established criteria and a state space approach. In Chapters 5, 6 and 7 dynamic stability and small signal dynamic response are studied through a state space representation of the system. In Chapter 5 the state space equations are derived for single machine systems. An example is provided in which the dynamic stability limit curves are plotted for various synchronous machine representations. In Chapter 6 the state space approach is extended to multi~machine systems. To draw conclusions concerning dynamic stability or dynamic response the system eigenvalues must be properly interpreted, and a discussion concerning correct interpretation is included. Chapter 7 presents a discussion of the optimisation of power system small sjgnal performance through the use of Liapunov functions.
Resumo:
With the extensive use of pulse modulation methods in telecommunications, much work has been done in the search for a better utilisation of the transmission channel.The present research is an extension of these investigations. A new modulation method, 'Variable Time-Scale Information Processing', (VTSIP), is proposed.The basic principles of this system have been established, and the main advantages and disadvantages investigated. With the proposed system, comparison circuits detect the instants at which the input signal voltage crosses predetermined amplitude levels.The time intervals between these occurrences are measured digitally and the results are temporarily stored, before being transmitted.After reception, an inverse process enables the original signal to be reconstituted.The advantage of this system is that the irregularities in the rate of information contained in the input signal are smoothed out before transmission, allowing the use of a smaller transmission bandwidth. A disadvantage of the system is the time delay necessarily introduced by the storage process.Another disadvantage is a type of distortion caused by the finite store capacity.A simulation of the system has been made using a standard speech signal, to make some assessment of this distortion. It is concluded that the new system should be an improvement on existing pulse transmission systems, allowing the use of a smaller transmission bandwidth, but introducing a time delay.
Resumo:
A variety of iron compounds containing vinyl or thiol functional groups (used as photoactivators) have been synthesised and some of these were successfully bound to both polyethylene and polypropylene backbones during processing in the presence of peroxide and interlinking agent. Concentrates (masterbatches) of the photoactivators in PP and PE were prepared and the pro-oxidant effect of the diluted masterbatches in absence and presence of an antioxidant was evaluated. An antioxidant photoactivator (FeDNC ) was found to sensitise the photoactivity of pro-oxidants (Metone A / Metone M) whereas an antioxidant (ZnDNC) was found to stabilise the polymer (PP and PE) containing both of these combinations. It was observed that the lower concentration of FeDNC sensitises the stability of the polymer containing very small concentration of NiDNC whereas higher concentration of FeDNC stabilises the polymer (LDPE) containing same amount of NiDNC compared to FeDNC alone. The photostability of unstabilised PP containing FeAc could be varied by varying the concentration of ZnDEC. Both the induction period and the UV - life time of the polymer increased by increasing concentration of ZnDEC. It is suggested that ligand exchange reaction may take place between FeAc and ZnDNC. A polymer bound UV stabiliser (HAEB) and a thermal stabiliser (DBBA) were used with a non extractable photoactivator (FeAc) in PP. Small concentrations of the stabilisers (HAEB and DBBA) in combination with the photoactivator (FeAc) sensitise the polymer. The antioxidant present in commercial polymer (LDPE and PP) was found to be of a hindered phenol type, which was found to antagonise with ZnDNC when used in combination with the photoactivators.
Resumo:
Some of the problems arising from the inherent instability of emulsions are discussed. Aspects of emulsion stability are described and particular attention is given to the influence of the chemical nature of the dispersed phase on adsorbed film structure and stability, Emulsion stability has been measured by a photomicrographic technique. Electrophoresis, interfacial tension and droplet rest-time data were also obtained. Emulsions were prepared using a range of oils, including aliphatic and aromatic hydrocarbons, dispersed In a solution of sodium dodecyl sulphate. In some cases a small amount of alkane or alkanol was incorporated into the oil phase. In general the findings agree with the classical view that the stability of oil-in-water emulsions is favoured by a closely packed interfacial film and appreciable electric charge on the droplets. The inclusion of non-ionic alcohol leads to enhanced stability, presumably owing to the formation of a "mixed" interfacial film which is more closely packed and probably more coherent than that of the anionic surfactant alone. In some instances differences in stability cannot he accounted for simply by differences in interfacial adsorption or droplet charge. Alternative explanations are discussed and it is postulated that the coarsening of emulsions may occur not only hy coalescence but also through the migration of oil from small droplets to larger ones by molecular diffusion. The viability of using the coalescence rates of droplets at a plane interface as a guide to emulsion stability has been researched. The construction of a suitable apparatus and the development of a standard testing procedure are described. Coalescence-time distributions may be correlated by equations similar to those presented by other workers, or by an analysis based upon the log-normal function. Stability parameters for a range of oils are discussed in terms of differences in film drainage and the natl1re of the interfacial film. Despite some broad correlations there is generally poor agreement between droplet and emulsion stabilities. It is concluded that hydrodynamic factors largely determine droplet stability in the systems studied. Consequently droplet rest-time measurements do not provide a sensible indication of emulsion stability,
Resumo:
High-performance liquid chromatographic methods are developed for the simultaneous determination of various salicylates, their p-hydroxy isomers and nicotinic acid esters. The method is sensitive enough to detect trace amounts (~µM/L)of the product generated from cross reactivity between the drugs and the vehicle. The developed method also allows analysis of various topical products containing salicylate and nicotinate esters in their formulations. Applying this method, the degradation profiles of salicylates, nicotinates, p-hydroxy benzoate, o-methoxy benzoate and aspirin prodrugs in alkaline media are determined. The profile for alkyl salicylate degradation is found to be first order (A---? B) When the alcoholic radical is similar to that of the ester. In alcohol having a radical different from that of the ester function, the degradation is found to proceed through competitive transesterification and hydrolysis. The intermediates are identified following synthesis and isolation. The rate and extent of transesterification depends on the proportion of alcohol present in the system. Equations are presented to model the time profiles of reactant and product concentration. The reactions are base catalysed and the predominant pathway involves a concerted solvent attack upon the salicylate anion. Competitive hydrolysis of both ester components also follows this mechanism at moderate pH values but rates increase under strongly alkaline conditions as direct hydroxide attack becomes significant. In contrast, transesterification is independent of base concentration once full ionization is accomplished. The competitive hydrolysis is modelled using equations involving the dielectric constant of the medium. A range of other esters are also shown to undergo base-catalysed transesterification. In non-alcoholic solution phenyl salicylate undergoes a concentration-dependent oligomerisation which yields salsalate among the products. Competitive transesterification and hydrolysis also occur in products for topical use which have vehicles based upon alcohol, glycol or glycol polymers. Such reactions may compromise stability assessments, pharmaceutical integrity and delivery profiles.
Resumo:
The case for monitoring large-scale sea level variability is established in the context of the estimation of the extent of anthropogenic climate change. Satellite altimeters are identified as having the potential to monitor this change with high resolution and accuracy. Possible sources of systematic errors and instabilities in these instruments which would be hurdles to the most accurate monitoring of such ocean signals are examined. Techniques for employing tide gauges to combat such inaccuracies are proposed and developed. The tide gauge at Newhaven in Sussex is used in conjunction with the nearby satellite laser ranger and high-resolution ocean models to estimate the absolute bias of the TOPEX, Poseidon, ERS 1 and ERS 2 altimeters. The theory which underlies the augmentation of altimeter measurements with tide gauge data is developed. In order to apply this, the tide gauges of the World Ocean Circulation Experiment are assessed and their suitability for altimeter calibration is determined. A reliable subset of these gauges is derived. A method of intra-altimeter calibration is developed using these tide gauges to remove the effect of variability over long time scales. In this way the long-term instability in the TOPEX range measurement is inferred and the drift arising from the on-board ultra stable oscillator is thus detected. An extension to this work develops a method for inter-altimeter calibration, allowing the systematic differences between unconnected altimeters to be measured. This is applied to the TOPEX and ERS 1 altimeters.
Resumo:
This thesis addresses the kineto-elastodynamic analysis of a four-bar mechanism running at high-speed where all links are assumed to be flexible. First, the mechanism, at static configurations, is considered as structure. Two methods are used to model the system, namely the finite element method (FEM) and the dynamic stiffness method. The natural frequencies and mode shapes at different positions from both methods are calculated and compared. The FEM is used to model the mechanism running at high-speed. The governing equations of motion are derived using Hamilton's principle. The equations obtained are a set of stiff ordinary differential equations with periodic coefficients. A model is developed whereby the FEM and the dynamic stiffness method are used conjointly to provide high-precision results with only one element per link. The principal concern of the mechanism designer is the behaviour of the mechanism at steady-state. Few algorithms have been developed to deliver the steady-state solution without resorting to costly time marching simulation. In this study two algorithms are developed to overcome the limitations of the existing algorithms. The superiority of the new algorithms is demonstrated. The notion of critical speeds is clarified and a distinction is drawn between "critical speeds", where stresses are at a local maximum, and "unstable bands" where the mechanism deflections will grow boundlessly. Floquet theory is used to assess the stability of the system. A simple method to locate the critical speeds is derived. It is shown that the critical speeds of the mechanism coincide with the local maxima of the eigenvalues of the transition matrix with respect to the rotational speed of the mechanism.