4 resultados para filopodia
em Aston University Research Archive
Resumo:
Cell migration requires the initial formation of cell protrusions, lamellipodia and/or filopodia, the attachment of the leading lamella to extracellular cues and the formation and efficient recycling of focal contacts at the leading edge. The small calcium binding EF-hand protein S100A4 has been shown to promote cell motility but the direct molecular mechanisms responsible remain to be elucidated. In this work, we provide new evidences indicating that elevated levels of S100A4 affect the stability of filopodia and prevent the maturation of focal complexes. Increasing the levels of S100A4 in a rat mammary benign tumor derived cell line results in acquired cellular migration on the wound healing scratch assay. At the cellular levels, we found that high levels of S100A4 induce the formation of many nascent filopodia, but that only a very small and limited number of those can stably adhere and mature, as opposed to control cells, which generate fewer protrusions but are able to maintain these into more mature projections. This observation was paralleled by the fact that S100A4 overexpressing cells were unable to establish stable focal adhesions. Using different truncated forms of the S100A4 proteins that are unable to bind to myosin IIA, our data suggests that this newly identified functions of S100A4 is myosin-dependent, providing new understanding on the regulatory functions of S100A4 on cellular migration.
Resumo:
In order to metastasize away from the primary tumor site and migrate into adjacent tissues, cancer cells will stimulate cellular motility through the regulation of their cytoskeletal structures. Through the coordinated polymerization of actin filaments, these cells will control the geometry of distinct structures, namely lamella, lamellipodia and filopodia, as well as the more recently characterized invadopodia. Because actin binding proteins play fundamental functions in regulating the dynamics of actin polymerization, they have been at the forefront of cancer research. This review focuses on a subset of actin binding proteins involved in the regulation of these cellular structures and protrusions, and presents some general principles summarizing how these proteins may remodel the structure of actin. The main body of this review aims to provide new insights into how the expression of these actin binding proteins is regulated during carcinogenesis and highlights new mechanisms that may be initiated by the metastatic cells to induce aberrant expression of such proteins. © 2013 Landes Bioscience.
Resumo:
Endothelial tip cells guide angiogenic sprouts by exploring the local environment for guidance cues such as vascular endothelial growth factor (VegfA). Here we present Flt1 (Vegf receptor 1) loss- and gain-of-function data in zebrafish showing that Flt1 regulates tip cell formation and arterial branching morphogenesis. Zebrafish embryos expressed soluble Flt1 (sFlt1) and membrane-bound Flt1 (mFlt1). In Tg(flt1(BAC):yfp) × Tg(kdrl:ras-cherry)(s916) embryos, flt1:yfp was expressed in tip, stalk and base cells of segmental artery sprouts and overlapped with kdrl:cherry expression in these domains. flt1 morphants showed increased tip cell numbers, enhanced angiogenic behavior and hyperbranching of segmental artery sprouts. The additional arterial branches developed into functional vessels carrying blood flow. In support of a functional role for the extracellular VEGF-binding domain of Flt1, overexpression of sflt1 or mflt1 rescued aberrant branching in flt1 morphants, and overexpression of sflt1 or mflt1 in controls resulted in short arterial sprouts with reduced numbers of filopodia. flt1 morphants showed reduced expression of Notch receptors and of the Notch downstream target efnb2a, and ectopic expression of flt4 in arteries, consistent with loss of Notch signaling. Conditional overexpression of the notch1a intracellular cleaved domain in flt1 morphants restored segmental artery patterning. The developing nervous system of the trunk contributed to the distribution of Flt1, and the loss of flt1 affected neurons. Thus, Flt1 acts in a Notch-dependent manner as a negative regulator of tip cell differentiation and branching. Flt1 distribution may be fine-tuned, involving interactions with the developing nervous system.
Resumo:
Since the first discovery of S100 members in 1965, their expressions have been affiliated with numerous biological functions in all cells of the body. However, in the recent years, S100A4, a member of this superfamily has emerged as the central target in generating new avenue for cancer therapy as its overexpression has been correlated with cancer patients’ mortality as well as established roles as motility and metastasis promoter. As it has no catalytic activity, S100A4 has to interact with its target proteins to regulate such effects. Up to date, more than 10 S100A4 target proteins have been identified but the mechanical process regulated by S100A4 to induce motility remains vague. In this work, we demonstrated that S100A4 overexpression resulted in actin filaments disorganisation, reduction in focal adhesions, instability of filopodia as well as exhibiting polarised morphology. However, such effects were not observed in truncated versions of S100A4 possibly highlighting the importance of C terminus of S100A4 target recognition. In order to assess some of the intracellular mechanisms that may be involved in promoting migrations, different strategies were used, including active pharmaceutical agents, inhibitors and knockdown experiments. Treatment of S100A4 overexpressing cells with blebbistatin and Y-27632, non muscle myosin IIA (NMMIIA) inhibitors, as well as knockdown of NMMIIA, resulted in motility enhancement and focal adhesions reduction proposing that NMMIIA assisted S100A4 in regulating cell motility but its presence is not essential. Further work done using Cos 7 cell lines, naturally lacking NMMIIA, further demonstrated that S100A4 is capable of regulating cell motility independent of NMMIIA, possibly through poor maturation of focal adhesion. Given that all these experiments highlighted the independency of NMMIIA towards migration, a protein that has been put at the forefront of S100A4-induced motility, we aimed to gather further understanding regarding the other molecular mechanisms that may be at play for motility. Using high throughput imaging (HCI), 3 compounds were identified to be capable of inhibiting S100A4-mediated migration. Although we have yet to investigate the underlying mechanism for their effects, these compounds have been shown to target membrane proteins and the externalisation of S100 proteins, for at least one of the compounds, leading us to speculate that preventing externalisation of S100A4 could potentially regulate cell motility.