5 resultados para field effects transistor

em Aston University Research Archive


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The magnetic field dependence of the travelling wave formed during the reaction of (ethylenediaminetetraacetato)cobalt (II) (Co(II)EDTA2- ) and hydrogen peroxide was studied using magnetic resonance imaging (MRI). The reaction was investigated in a vertical tube, in which the wave was initiated from above. The wave propagated downwards, initially with a flat wavefront before forming a finger. Magnetic field effects were observed only once the finger had formed. The wave propagation was accelerated by a magnetic field with a negative gradient (i.e., when the field was stronger at the top of the tube than at the bottom) and slightly decelerated by positive field gradients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A critical review of previous research revealed that visual attention tests, such as the Useful Field of View (UFOV) test, provided the best means of detecting age-related changes to the visual system that could potentially increase crash risk. However, the question was raised as to whether the UFOV, which was regarded as a static visual attention test, could be improved by inclusion of kinetic targets that more closely represent the driving task. A computer program was written to provide more information about the derivation of UFOV test scores. Although this investigation succeeded in providing new information, some of the commercially protected UFOV test procedures still remain unknown. Two kinetic visual attention tests (DRTS1 and 2), developed at Aston University to investigate inclusion of kinetic targets in visual attention tests, were introduced. The UFOV was found to be more repeatable than either of the kinetic visual attention tests and learning effects or age did not influence these findings. Determinants of static and kinetic visual attention were explored. Increasing target eccentricity led to reduced performance on the UFOV and DRTS1 tests. The DRTS2 was not affected by eccentricity but this may have been due to the style of presentation of its targets. This might also have explained why only the DRTS2 showed laterality effects (i.e. better performance to targets presented on the left hand side of the road). Radial location, explored using the UFOV test, showed that subjects responded best to targets positioned to the horizontal meridian. Distraction had opposite effects on static and kinetic visual attention. While UFOV test performance declined with distraction, DRTS1 performance increased. Previous research had shown that this striking difference was to be expected. Whereas the detection of static targets is attenuated in the presence of distracting stimuli, distracting stimuli that move in a structured flow field enhances the detection of moving targets. Subjects reacted more slowly to kinetic compared to static targets, longitudinal motion compared to angular motion and to increased self-motion. However, the effects of longitudinal motion, angular motion, self-motion and even target eccentricity were caused by target edge speed variations arising because of optic flow field effects. The UFOV test was more able to detect age-related changes to the visual system than were either of the kinetic visual attention tests. The driving samples investigated were too limited to draw firm conclusions. Nevertheless, the results presented showed that neither the DRTS2 nor the UFOV tests were powerful tools for the identification of drivers prone to crashes or poor driving performance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study examined the use of non-standard parameters to investigate the visual field, with particular reference to the detection of glaucomatous visual field loss. Evaluation of the new perimetric strategy for threshold estimation - FASTPAC, demonstrated a reduction in the examination time of normals compared to the standard strategy. Despite an increased within-test variability the FASTPAC strategy produced a similar mean sensitivity to the standard strategy, reducing the effects of patient fatigue. The new technique of Blue-Yellow perimetry was compared to White-White perimetry for the detection of glaucomatous field loss in OHT and POAG. Using a database of normal subjects, confidence limits for normality were constructed to account for the increased between-subject variability with increase in age and eccentricity and for the greater variability of the Blue-Yellow field compared to the White-White field. Effects of individual ocular media absorption had little effect on Blue-Yellow field variability. Total and pattern probability analysis revealed five of 27 OHTs to exhibit Blue-Yellow focal abnormalities; two of these patients subsequently developed White-White loss. Twelve of the 24 POAGs revealed wider and/or deeper Blue-Yellow loss compared with the White-White field. Blue-Yellow perimetry showed good sensitivity and specificity characteristics, however, lack of perimetric experience and the presence of cataract influenced the Blue-Yellow visual field and may confound the interpretation of Blue-Yellow visual field loss. Visual field indices demonstrated a moderate relationship to the structural parameters of the optic nerve head using scanning laser tomography. No abnormalities in Blue-Yellow or Red-Green colour CS was apparent for the OHT patients. A greater vulnerability of the SWS pathway in glaucoma was demonstrated using Blue-Yellow perimetry however predicting which patients may benefit from B-Y perimetric examination is difficult. Furthermore, cataract and the extent of the field loss may limit the extent to which the integrity of the SWS channels can be selectively examined.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A high-dielectric constant (high-k) TiOx thin layer was fabricated on hydrogen-terminated diamond (H-diamond) surface by low temperature oxidation of a thin titanium layer in ambient air. The metallic titanium layer was deposited by sputter deposition. The dielectric constant of the resultant TiOx was calculated to be around 12. The capacitance density of the metal-oxide-semiconductor (MOS) based on the TiOx/H-diamond was as high as 0.75 µF/cm2 contributed from the high-k value and the very thin thickness of the TiOx layer. The leakage current was lower than 10-13 A at reverse biases and 10-7A at the forward bias of -2 V. The MOS field-effect transistor based on the high-k TiOx/H-diamond was demonstrated. The utilization of the high-k TiOx with a very thin thickness brought forward the features of an ideally low subthreshold swing slope of 65 mV per decade and improved drain current at low gate voltages. The advantages of the utilization high-k dielectric for diamond MOSFETs are anticipated.