4 resultados para fate

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes investigations upon pseudopeptides which were conducted to improve our understanding of the fate of synthetic macromolecules in cells and to develop approaches to influence that fate. The low uptake of molecules across the external cellular membrane is the principal barrier against effective delivery of therapeutic products to within the cell structure. In nature, disruption of this membrane by amphiphilic peptides plays a central role in the pathogenesis by bacterial and toxin infections. These amphiphilic peptides contain both hydrophobic and weakly charged hydrophilic amino acid residues and upon activation they become integrated into the lipid bilayers of the extracellular or endosomal membranes. The architectures of the pseudopeptides described here were designed to display similar pH dependent membrane rupturing activity to that of peptides derived from the influenza virus hemagglutinin HA-2. This HA protein promotes fusion of the influenza virus envelope with the cell endosome membrane due to a change in conformation in response to the acidic pH of the endosome lumen (pH 5.0-6.0). The pseudopeptides were obtained by the copolymerisation of L-lysine and L-lysine ethyl-ester with various dicarboxylic acid moieties. In this way a linear polyamide comprising of alternating pendant carboxylic acids and pendant hydrophobic moieties was made. At physiological pH (pH 7.4), electrostatic repulsion of pendant anionic carboxyl groups along the polymer backbone is sufficient to overcome the intramolecular association of the hydrophobic groups resulting in an extended conformation. At low pH (typically pH 4.8) loss of charge results in increased intramolecular hydrophobic association and the polymer chain collapses to a compact conformation, leading to precipitation of the polymer. Consequently, a conformation dependent functional property could be made to respond to small changes in the environmental pH. Pseudopepides were investigated for their cytoxicity towards a well known cell line, namely C26 (colorectal adenocarcinoma) and were shown through the use of a cell viability assay, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide) to be well tolerated by C26 cells over a range of concentrations (2-500,μg/ml) at physiological pH (pH 7.4). A modified version of a shorter 30-minute coupled enzymatic assay, the LDH (lactate dehydrogenase) assay was used to evaluate the ability of the pseudopeptides to disrupt the membrane of two different cell lines (COS-1; African green monkey, kidney and A2780; human ovarian carcinoma) at low pH (pH 5.5). The cell membrane disruption property of the pseudopeptides was successfully demonstrated for COS-I and A2780 cell lines at this pH (pH 5.5). A variety of cell lines were chosen owing to limited availability and to compare the cytotoxic action of these pH responsive psudopeptides towards normal and tumorogenic cell lines. To investigate the intracellular delivery of one of the pseudopeptides, poly (L-lysine iso-phthalamide) and its subcellular location, a Cy3 bisamine fluorophore was conjugated into its backbone, at ratios of dye:lysine of 1:20, 1:30, 1:40, 1:60 and 1:80. Native polyacrylacrylamide gel electrophoresis (PAGE) and high voltage paper electrophoresis (HVPE) studies of the polydyes were conducted and provided evidence that that the Cy3 bisamine fluorophore was conjugated into the backbone of the polymer, poly (L-lysine iso-phthalamide). The subcellular fate of the fluorescentlylabelled "polydye" (hereafter PD20) was monitored by laser scanning confocal microscopy (LSCM) in CHO (Chinese hamster ovary) cells cultured in-vitro at various pH values (pH 7.4 and 5.0). LSCM images depicting time-dependent internalisation of PD20 indicated that PD20 traversed the extracellular membrane of CHO cells cultured in-vitro within ten minutes and migrated towards the endosomal regions where the pH is in the region of 5.0 to 6.0. Nuclear localisation of PD20 was demonstrated in a subpopulation of CHO cells. A further study was completed in CHO and HepG2 (hepatocellular carcinoma) cells cultured in-vitro using a lower molecular weight polymer to demonstrate that the molecular weight of "polydye" could be tailored to attain nuclear trafficking in cells. Prospective use of this technology encompasses a method of delivering a payload into a living cell based upon the hypercoiling nature of the pseudopeptides studied in this thesis and has led to a patent application (GB0228525.2; 20(2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Published data indicate that the polar lipid content of human meibomian gland secretions (MGS) could be anything between 0.5% and 13% of the total lipid. The tear film phospholipid composition has not been studied in great detail and it has been understood that the relative proportions of lipids in MGS would be maintained in the tear film. The purpose of this work was to determine the concentration of phospholipids in the human tear film. Methods: Liquid chromatography mass spectrometry (LCMS) and thin layer chromatography (TLC) were used to determine the concentration of phospholipid in the tear film. Additionally, an Amplex Red phosphatidylcholine-specific phospholipase C (PLC) assay kit was used for determination of the activity of PLC in the tear film. Results: Phospholipids were not detected in any of the tested human tear samples with the low limit of detection being 1.3 µg/mL for TLC and 4 µg/mL for liquid chromatography mass spectrometry. TLC indicated that diacylglycerol (DAG) may be present in the tear film. PLC was in the tear film with an activity determined at approximately 15 mU/mL, equivalent to the removal of head groups from phosphatidylcholine at a rate of approximately 15 µM/min. Conclusions: This work shows that phospholipid was not detected in any of the tested human tear samples (above the lower limits of detection as described) and suggests the presence of DAG in the tear film. DAG is known to be at low concentrations in MGS. These observations indicate that PLC may play a role in modulating the tear film phospholipid concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipids play a vital role in the body at many interfaces. Examples include the lubrication of articulating joints by synovial fluid, the coating of the lung by pulmonary surfactant and the functions of the tear film in the protection of the anterior eye. The role of the lipids is similar at each site - acting as boundary lubricants and reducing surface and interfacial tension. This review focuses on how and why contact lens wear can disrupt the normal function of lipids within the tear film and explains how the otherwise advantageous presence and function of tear lipids can become disadvantageous, causing problems for the wearer. Because the contact lens is some ten times thicker than the tear film, lipids deposited on the anterior surface become immobilised, reducing lipid turnover and thus leading to prolonged exposure to oxygen and light with consequent generation of degradation products. These degraded lipids reduce lens wettability and have additionally been linked to problems of contact lens discomfort and intolerance. Lipid problems are influenced by the thickness of the lens, the material, surface modification, mode of wear and ultimately the subject. The most influential of these variables is frequently the subject. © 2012.