28 resultados para fast reactor
em Aston University Research Archive
Resumo:
The objective of this work was to design, construct, test and operate a novel circulating fluid bed fast pyrolysis reactor system for production of liquids from biomass. The novelty lies in incorporating an integral char combustor to provide autothermal operation. A reactor design methodology was devised which correlated input parameters to process variables, namely temperature, heat transfer and gas/vapour residence time, for both the char combustor and biomass pyrolyser. From this methodology a CFB reactor was designed with integral char combustion for 10 kg/h biomass throughput. A full-scale cold model of the CFB unit was constructed and tested to derive suitable hydrodynamic relationships and performance constraints. Early difficulties encountered with poor solids circulation and inefficient product recovery were overcome by a series of modifications. A total of 11 runs in a pyrolysis mode were carried out with a maximum total liquids yield of 61.50% wt on a maf biomass basis, obtained at 500°C and with 0.46 s gas/vapour residence time. This could be improved by improved vapour recovery by direct quenching up to an anticipated 75 % wt on a moisture-and-ash-free biomass basis. The reactor provides a very high specific throughput of 1.12 - 1.48 kg/hm2 and the lowest gas-to-feed ratio of 1.3 - 1.9 kg gas/kg feed compared to other fast pyrolysis processes based on pneumatic reactors and has a good scale-up potential. These features should provide significant capital cost reduction. Results to date suggest that the process is limited by the extent of char combustion. Future work will address resizing of the char combustor to increase overall system capacity, improvement in solid separation and substantially better liquid recovery. Extended testing will provide better evaluation of steady state operation and provide data for process simulation and reactor modeling.
Resumo:
The objective of this work was to design, construct and commission a new ablative pyrolysis reactor and a high efficiency product collection system. The reactor was to have a nominal throughput of 10 kg/11r of dry biomass and be inherently scalable up to an industrial scale application of 10 tones/hr. The whole process consists of a bladed ablative pyrolysis reactor, two high efficiency cyclones for char removal and a disk and doughnut quench column combined with a wet walled electrostatic precipitator, which is directly mounted on top, for liquids collection. In order to aid design and scale-up calculations, detailed mathematical modelling was undertaken of the reaction system enabling sizes, efficiencies and operating conditions to be determined. Specifically, a modular approach was taken due to the iterative nature of some of the design methodologies, with the output from one module being the input to the next. Separate modules were developed for the determination of the biomass ablation rate, specification of the reactor capacity, cyclone design, quench column design and electrostatic precipitator design. These models enabled a rigorous design protocol to be developed capable of specifying the required reactor and product collection system size for specified biomass throughputs, operating conditions and collection efficiencies. The reactor proved capable of generating an ablation rate of 0.63 mm/s for pine wood at a temperature of 525 'DC with a relative velocity between the heated surface and reacting biomass particle of 12.1 m/s. The reactor achieved a maximum throughput of 2.3 kg/hr, which was the maximum the biomass feeder could supply. The reactor is capable of being operated at a far higher throughput but this would require a new feeder and drive motor to be purchased. Modelling showed that the reactor is capable of achieving a reactor throughput of approximately 30 kg/hr. This is an area that should be considered for the future as the reactor is currently operating well below its theoretical maximum. Calculations show that the current product collection system could operate efficiently up to a maximum feed rate of 10 kg/Fir, provided the inert gas supply was adjusted accordingly to keep the vapour residence time in the electrostatic precipitator above one second. Operation above 10 kg/hr would require some modifications to the product collection system. Eight experimental runs were documented and considered successful, more were attempted but due to equipment failure had to be abandoned. This does not detract from the fact that the reactor and product collection system design was extremely efficient. The maximum total liquid yield was 64.9 % liquid yields on a dry wood fed basis. It is considered that the liquid yield would have been higher had there been sufficient development time to overcome certain operational difficulties and if longer operating runs had been attempted to offset product losses occurring due to the difficulties in collecting all available product from a large scale collection unit. The liquids collection system was highly efficient and modeling determined a liquid collection efficiency of above 99% on a mass basis. This was validated due to the fact that a dry ice/acetone condenser and a cotton wool filter downstream of the collection unit enabled mass measurements of the amount of condensable product exiting the product collection unit. This showed that the collection efficiency was in excess of 99% on a mass basis.
Resumo:
In this work, the angular distributions for elastic and. inelastic scattering of fast neutrons in fusion .reactor materials have been studied. Lithium and lead material are likely to be common components of fusion reactor wall configuration design. The measurements were performed using an associated particle time-of- flight technique. The 14 and 14.44 Mev neutrons were produced by the T(d,n} 4He reaction with deuterons being accelerated in a 150kev SAMES type J accelerator at ASTON and in.the 3. Mev DYNAMITRON at the Joint Radiation Centre, Birmingham respectively. The associated alpha-particles and fast. neutrons were detected.by means of a plastic scintillator mounted on a fast focused photomultiplier tube. The samples used were extended flat plates of thicknesses up to 0.9 mean-free-path for Lithium and 1.562 mean-free-path for Lead. The differential elastic scattering cross-sections were measured for 14 Mev neutrons for various thicknesses of Lithium and Lead in the angular range from zero to; 90º. In addition, the angular distributions of elastically scattered 14,.44 Mev .neutrons from Lithium samples were studied in the same angular range. Inelastic scattering to the 4.63 Mev state in 7Li and the 2.6 Mev state, and 4.1 Mev state in 208Pb have:been :measured.The results are compared to ENDF/B-IV data files and to previous measurements. For the Lead samples the differential neutron scattering:cross-sections for discrete 3 Mev ranges and the angular distributions were measured. The increase in effective cross-section due to multiple scattering effects,as the sample thickness increased:was found to be predicted by the empirical .relation ....... A good fit to the exoerimental data was obtained using the universal constant............ The differential elastic scattering cross-section data for thin samples of Lithium and Lead were analyzed in terms of optical model calculations using the. computer code. RAROMP. Parameter search procedures produced good fits to the·cross-sections. For the case of thick samples of Lithium and Lead, the measured angular distributions of :the scattered neutrons were compared to the predictions of the continuous slowing down model.
Resumo:
This paper analyzes the physical phenomena that take place inside an 1 kg/h bubbling fluidized bed reactor located at Aston University and presents a geometrically modified version of it, in order to improve certain hydrodynamic and gas flow characteristics. The bed uses, in its current operation, 40 L/min of N2 at 520 °C fed through a distributor plate and 15 L/min purge gas stream, i.e., N2 at 20 °C, via the feeding tube. The Eulerian model of FLUENT 6.3 is used for the simulation of the bed hydrodynamics, while the k - ε model accounts for the effect of the turbulence field of one phase on the other. The three-dimensional simulation of the current operation of the reactor showed that a stationary bubble was formed next to the feeding tube. The size of the permanent bubble reaches up to the splash zone of the reactor, without any fluidizaton taking place underneath the feeder. The gas flow dynamics in the freeboard of the reactor is also analyzed. A modified version of the reactor is presented, simulated, and analyzed, together with a discussion on the impact of the flow dynamics on the fast pyrolysis of biomass. © 2010 American Chemical Society.
Resumo:
The overall objective of this work was to compare the effect of pre-treatment and catalysts on the quality of liquid products from fast pyrolysis of biomass. This study investigated the upgrading of bio-oil in terms of its quality as a bio-fuel and/or source of chemicals. Bio-oil used directly as a biofuel for heat or power needs to be improved particularly in terms of temperature sensitivity, oxygen content, chemical instability, solid content, and heating values. Chemicals produced from bio-oil need to be able to meet product specifications for market acceptability. There were two main objectives in this research. The first was to examine the influence of pre-treatment of biomass on the fast pyrolysis process and liquid quality. The relationship between the method of pre-treatment of biomass feedstock to fast pyrolysis oil quality was studied. The thermal decomposition behaviour of untreated and pretreated feedstocks was studied by using a TGA (thermogravimetric analysis) and a Py-GC/MS (pyroprobe-gas chromatography/mass spectrometry). Laboratory scale reactors (100g/h, 300g/h, 1kg/h) were used to process untreated and pretreated feedstocks by fast pyrolysis. The second objective was to study the influence of numerous catalysts on fast pyrolysis liquids from wheat straw. The first step applied analytical pyrolysis (Py-GC/MS) to determine which catalysts had an effect on fast pyrolysis liquid, in order to select catalysts for further laboratory fast pyrolysis. The effect of activation, temperature, and biomass pre-treatment on catalysts were also investigated. Laboratory experiments were also conducted using the existing 300g/h fluidised bed reactor system with a secondary catalytic fixed bed reactor. The screening of catalysts showed that CoMo was a highly active catalyst, which particularly reduced the higher molecular weight products of fast pyrolysis. From these screening tests, CoMo catalyst was selected for larger scale laboratory experiments. With reference to the effect of pre-treatment work on fast pyrolysis process, a significant effect occurred on the thermal decomposition of biomass, as well as the pyrolysis products composition, and the proportion of key components in bio-oil. Torrefaction proved to have a mild influence on pyrolysis products, when compared to aquathermolysis and steam pre-treatment.
Resumo:
A two-tier study is presented in this thesis. The first involves the commissioning of an extant but at the time, unproven bubbling fluidised bed fast pyrolysis unit. The unit was designed for an intended nominal throughput of 300 g/h of biomass. The unit came complete with solids separation, pyrolysis vapour quenching and oil collection systems. Modifications were carried out on various sections of the system including the reactor heating, quenching and liquid collection systems. The modifications allowed for fast pyrolysis experiments to be carried out at the appropriate temperatures. Bio-oil was generated using conventional biomass feedstocks including Willow, beechwood, Pine and Miscanthus. Results from this phase of the research showed however, that although the rig was capable of processing biomass to bio-oil, it was characterised by low mass balance closures and recurrent operational problems. The problems included blockages, poor reactor hydrodynamics and reduced organic liquid yields. The less than optimal performance of individual sections, particularly the feed and reactor systems of the rig, culminated in a poor overall performance of the system. The second phase of this research involved the redesign of two key components of the unit. An alternative feeding system was commissioned for the unit. The feed system included an off the shelf gravimetric system for accurate metering and efficient delivery of biomass. Similarly, a new bubbling fluidised bed reactor with an intended nominal throughput of 500g/h of biomass was designed and constructed. The design leveraged on experience from the initial commissioning phase with proven kinetic and hydrodynamic studies. These units were commissioned as part of the optimisation phase of the study. Also as part of this study, two varieties each, of previously unreported feedstocks namely Jatropha curcas and Moringa olifiera oil seed press cakes were characterised to determine their suitability as feedstocks for liquid fuel production via fast pyrolysis. Consequently, the feedstocks were used for the production of pyrolysis liquids. The quality of the pyrolysis liquids from the feedstocks were then investigated via a number of analytical techniques. The oils from the press cakes showed high levels of stability and reduced pH values. The improvements to the design of the fast pyrolysis unit led to higher mass balance closures and increased organic liquid yields. The maximum liquid yield obtained from the press cakes was from African Jatropha press cake at 66 wt% on a dry basis.
Resumo:
The article deals with the CFD modelling of fast pyrolysis of biomass in an Entrained Flow Reactor (EFR). The Lagrangian approach is adopted for the particle tracking, while the flow of the inert gas is treated with the standard Eulerian method for gases. The model includes the thermal degradation of biomass to char with simultaneous evolution of gases and tars from a discrete biomass particle. The chemical reactions are represented using a two-stage, semi-global model. The radial distribution of the pyrolysis products is predicted as well as their effect on the particle properties. The convective heat transfer to the surface of the particle is computed using the Ranz-Marshall correlation.
Resumo:
The pyrolysis of a freely moving cellulosic particle inside a 41.7mgs -1 source continuously fed fluid bed reactor subjected to convective heat transfer is modelled. The Lagrangian approach is adopted for the particle tracking inside the reactor, while the flow of the inert gas is treated with the standard Eulerian method for gases. The model incorporates the thermal degradation of cellulose to char with simultaneous evolution of gases and vapours from discrete cellulosic particles. The reaction kinetics is represented according to the Broido–Shafizadeh scheme. The convective heat transfer to the surface of the particle is solved by two means, namely the Ranz–Marshall correlation and the limit case of infinitely fast external heat transfer rates. The results from both approaches are compared and discussed. The effect of the different heat transfer rates on the discrete phase trajectory is also considered.
Resumo:
The fluid–particle interaction inside a 150 g/h fluidised bed reactor is modelled. The biomass particle is injected into the fluidised bed and the heat, momentum and mass transport from the fluidising gas and fluidised sand is modelled. The Eulerian approach is used to model the bubbling behaviour of the sand, which is treated as a continuum. Heat transfer from the bubbling bed to the discrete biomass particle, as well as biomass reaction kinetics are modelled according to the literature. The particle motion inside the reactor is computed using drag laws, dependent on the local volume fraction of each phase. FLUENT 6.2 has been used as the modelling framework of the simulations with the whole pyrolysis model incorporated in the form of user-defined function (UDF). The study completes the fast pyrolysis modelling in bubbling fluidised bed reactors.
Resumo:
The fluid–particle interaction inside a 150 g/h fluidised bed reactor is modelled. The biomass particle is injected into the fluidised bed and the momentum transport from the fluidising gas and fluidised sand is modelled. The Eulerian approach is used to model the bubbling behaviour of the sand, which is treated as a continuum. The particle motion inside the reactor is computed using drag laws, dependent on the local volume fraction of each phase, according to the literature. FLUENT 6.2 has been used as the modelling framework of the simulations with a completely revised drag model, in the form of user defined function (UDF), to calculate the forces exerted on the particle as well as its velocity components. 2-D and 3-D simulations are tested and compared. The study is the first part of a complete pyrolysis model in fluidised bed reactors.
Resumo:
The fluid–particle interaction and the impact of shrinkage on pyrolysis of biomass inside a 150 g/h fluidised bed reactor is modelled. Two 500 View the MathML sourcem in diameter biomass particles are injected into the fluidised bed with different shrinkage conditions. The two different conditions consist of (1) shrinkage equal to the volume left by the solid devolatilization, and (2) shrinkage parameters equal to approximately half of particle volume. The effect of shrinkage is analysed in terms of heat and momentum transfer as well as product yields, pyrolysis time and particle size considering spherical geometries. The Eulerian approach is used to model the bubbling behaviour of the sand, which is treated as a continuum. Heat transfer from the bubbling bed to the discrete biomass particle, as well as biomass reaction kinetics are modelled according to the literature. The particle motion inside the reactor is computed using drag laws, dependent on the local volume fraction of each phase. FLUENT 6.2 has been used as the modelling framework of the simulations with the whole pyrolysis model incorporated in the form of user defined function (UDF).
Resumo:
The paper presents a comparison between the different drag models for granular flows developed in the literature and the effect of each one of them on the fast pyrolysis of wood. The process takes place on an 100 g/h lab scale bubbling fluidized bed reactor located at Aston University. FLUENT 6.3 is used as the modeling framework of the fluidized bed hydrodynamics, while the fast pyrolysis of the discrete wood particles is incorporated as an external user defined function (UDF) hooked to FLUENT’s main code structure. Three different drag models for granular flows are compared, namely the Gidaspow, Syamlal O’Brien, and Wen-Yu, already incorporated in FLUENT’s main code, and their impact on particle trajectory, heat transfer, degradation rate, product yields, and char residence time is quantified. The Eulerian approach is used to model the bubbling behavior of the sand, which is treated as a continuum. Biomass reaction kinetics is modeled according to the literature using a two-stage, semiglobal model that takes into account secondary reactions.
Resumo:
In the present work the neutron emission spectra from a graphite cube, and from natural uranium, lithium fluoride, graphite, lead and steel slabs bombarded with 14.1 MeV neutrons were measured to test nuclear data and calculational methods for D - T fusion reactor neutronics. The neutron spectra measured were performed by an organic scintillator using a pulse shape discrimination technique based on a charge comparison method to reject the gamma rays counts. A computer programme was used to analyse the experimental data by the differentiation unfolding method. The 14.1 MeV neutron source was obtained from T(d,n)4He reaction by the bombardment of T - Ti target with a deuteron beam of energy 130 KeV. The total neutron yield was monitored by the associated particle method using a silicon surface barrier detector. The numerical calculations were performed using the one-dimensional discrete-ordinate neutron transport code ANISN with the ZZ-FEWG 1/ 31-1F cross section library. A computer programme based on Gaussian smoothing function was used to smooth the calculated data and to match the experimental data. There was general agreement between measured and calculated spectra for the range of materials studied. The ANISN calculations carried out with P3 - S8 calculations together with representation of the slab assemblies by a hollow sphere with no reflection at the internal boundary were adequate to model the experimental data and hence it appears that the cross section set is satisfactory and for the materials tested needs no modification in the range 14.1 MeV to 2 MeV. Also it would be possible to carry out a study on fusion reactor blankets, using cylindrical geometry and including a series of concentric cylindrical shells to represent the torus wall, possible neutron converter and breeder regions, and reflector and shielding regions.
Resumo:
In the present work, the elastic scattering of fast neutrons from iron and concrete samples were studied at incident neutron energies of 14.0 and 14.4 Mev, using a neutron spectrometer based on the associated particle time-of-flight technique. These samples were chosen because of their importance in the design of fusion reactor shielding and construction. Using the S.A.M.E.S. accelerator and the 3 M v Dynamitron accelerator at the Radiation Centre, 14.0 and 14.4 Mev neutrons were produced by the T(d, n)4He reaction at incident deuteron energies of 140 keV and 900 keV mass III ions respectively. The time of origin of the neutron was determined by detecting the associated alpha particles. The samples used were extended flat plates of thicknesses up to 1.73 mean free paths for iron and 2.3 mean free paths for concrete. The associated alpha particles and fast neutrons were detected by means of a plastic scintillator mounted on a fast focused photomultiplier tube. The differential neutron elastic scattering cross-sections were measured for 14 Mev neutrons in various thicknesses of iron and concrete in the angular range from zero to 90°. In addition, the angular distributions of 14.4 Mev neutrons after passing through extended samples of iron were measured at several scattering angles in the same angular range. The measurements obtained for the thin sample of iron were compared with the results of Coon et al. The differential cross-sections for the thin iron sample were also analyzed on the optical model using the computer code RAROMP. For the concrete sample, the angular distribution of the thin sample was compared with the cross-sections calculated from the major constituent elements of concrete, and with the predicted values of the optical model for those elements. No published data could be found to compare with the results of the concrete differential cross-sections. In the case of thick samples of iron and concrete, the number of scattered neutrons were compared with a phenomological calculation based on the continuous slowing down model. The variation of measured cross-sections with sample thickness were found to follow the empirical relation σ = σ0 eαx. By using the universal constant "K", good fits were obtained to the experimental data. In parallel with the work at 14.0 and 14.4 Mev, an associated particle time-of-flight spectrometer was investigated which used the 2H(d,n)3He reaction for 3.02 Mev neutron energy at the incident deuteron energy of 1 Mev.
Resumo:
A hot filtration unit downstream of a 1kg/h fluidised bed fast pyrolysis reactor was designed and built. The filter unit operates at 450oC and consists of 1 exchangeable filter candle with reverse pulse cleaning system. Hot filtration experiments up to 7 hours were performed with beech wood as feedstock. It was possible to produce fast pyrolysis oils with a solid content below 0.01 wt%. The additional residence time of the pyrolysis vapours and secondary vapour cracking on the filter cake caused an increase of non-condensable gases at the expense of organic liquid yield. The oils produced with hot filtration showed superior quality properties regarding viscosity than standard pyrolysis oils. The oils were analysed by rotational viscosimetry and gel permeation chromatography before and after accelerated aging. During filtration the separated particulates accumulate on the candle surface and build up the filter cake. The filter cake leads to an increase in pressure drop between the raw gas and the clean gas side of the filter candle. At a certain pressure drop the filter cake has to be removed by reverse pulse cleaning to regenerate the pressure drop. The experiments showed that successful pressure drop recovery was possible during the initial filtration cycles, thereafter further cycles showed minor pressure drop recovery and therefore a steady increase in differential pressure. Filtration with pre-coating the candle to form an additional layer between the filter candle and cake resulted in total removal of the dust cake.