8 resultados para face inversion effect
em Aston University Research Archive
Resumo:
In the "Thatcher illusion" a face, in which the eyes and mouth are inverted relative to the rest of the face, looks grotesque when shown upright but not when inverted. In four experiments we investigated the contribution of local and global processing to this illusion in normal observers. We examined inversion effects (i.e., better performance for upright than for inverted faces) in a task requiring discrimination of whether faces were or were not "thatcherized". Observers made same/different judgements to isolated face parts (Experiments 1-2) and to whole faces (Experiments 3-4). Face pairs had the same or different identity, allowing for different processing strategies using feature-based or configural information, respectively. In Experiment 1, feature-based matching of same-person face parts yielded only a small inversion effect for normal face parts. However, when feature-based matching was prevented by using the face parts of different people on all trials (Experiment 2) an inversion effect occurred for normal but not for thatcherized parts. In Experiments 3 and 4, inversion effects occurred with normal but not with thatcherized whole faces, on both same- and different-person matching tasks. This suggests that a common configural strategy was used with whole (normal) faces. Face context facilitated attention to misoriented parts in same-person but not in different-person matching. The results indicate that (1) face inversion disrupts local configural processing, but not the processing of image features, and (2) thatcherization disrupts local configural processing in upright faces.
Resumo:
We investigated the role of local and global information on perceptual encoding of faces in patient HJA, who shows prosopagnosia and visual agnosia following occipito-temporal damage. HJA and an age-matched control were tested in a simultaneous matching task which focused on detection of local changes in faces: the inversion of central parts (eyes and mouth) relative to their context (as in the Thatcher illusion). Same-different judgements were made to normal, “thatcherised” and mixed type face pairs. Whole faces (Experiment 1), or face parts (Experiment 2), were presented in upright and inverted orientations. Compared to the control, HJA was severely impaired at matching whole faces, but he improved dramatically when face parts were presented in isolation. This suggests an inhibitory influence of face context on HJAs processing of local parts and a relatively intact ability to process part-based information from a face (when context cannot interfere). Face inversion did not affect HJAs performance. A control experiment (Experiment 3) with non-face stimuli (houses) suggested that the inhibitory influence of context on HJAs performance was restricted to faces. These results indicate that contextual information in a face can have an adverse influence on the processing of local part-based information in prosopagnosia.
Resumo:
The current research examined the influence of ingroup/outgroup categorization on brain event-related potentials measured during perceptual processing of own- and other-race faces. White participants performed a sequential matching task with upright and inverted faces belonging either to their own race (White) or to another race (Black) and affiliated with either their own university or another university by a preceding visual prime. Results demonstrated that the right-lateralized N170 component evoked by test faces was modulated by race and by social category: the N170 to own-race faces showed a larger inversion effect (i.e., latency delay for inverted faces) when the faces were categorized as other-university rather than own-university members; the N170 to other-race faces showed no modulation of its inversion effect by university affiliation. These results suggest that neural correlates of structural face encoding (as evidenced by the N170 inversion effects) can be modulated by both visual (racial) and nonvisual (social) ingroup/outgroup status. © 2014 © 2014 Taylor & Francis.
Resumo:
In the Thatcher illusion, a face with inverted eyes and mouth looks abnormal when upright but not when inverted. Behavioral studies have shown that thatcherization of an upright face disrupts perceptual processing of the local configuration. We recorded high-density EEG from normal observers to study ERP correlates of the illusion during the perception of faces and nonface objects, to determine whether inversion and thatcherization affect similar neural mechanisms. Observers viewed faces and houses in four conditions (upright vs. inverted, and normal vs. thatcherized) while detecting an oddball category (chairs). Thatcherization delayed the N170 component over occipito-temporal cortex to faces, but not to houses. This modulation matched the illusion as it was larger for upright than inverted faces. The P1 over medial occipital regions was delayed by face inversion but unaffected by thatcherization. Finally, face thatcherization delayed P2 over occipito-temporal but not over parietal regions, while inversion affected P2 across categories. All effects involving thatcherization were face-specific. These results indicate that effects of face inversion and feature inversion (in thatcherized faces) can be distinguished on a functional as well as neural level, and that they affect configural processing of faces in different time windows. © 2006 Elsevier Inc.
Resumo:
This work presents pressure distributions and fluid flow patterns on the shellside of a cylindrical shell-and-tube heat exchanger. The apparatus used was constructed from glass enabling direct observation of the flow using a dye release technique and had ten traversable pressure instrumented tubes permitting detailed pressure distributions to be obtained. The `exchanger' had a large tube bundle (278 tubes) and main flow areas typical of practical designs. Six geometries were studied: three baffle spacings both with and without baffle leakage. Results are also presented of three-dimensional modelling of shellside flows using the Harwell Laboratory's FLOW3D code. Flow visualisation provided flow patterns in the central plane of the bundle and adjacent to the shell wall. Comparison of these high-lighted significant radial flow variations. In particular, separated regions, originating from the baffle tips, were observed. The size of these regions was small in the bundle central plane but large adjacent to the shell wall and extended into the bypass lane. This appeared to reduce the bypass flow area and hence the bypass flow fraction. The three-dimensional flow modelling results were presented as velocity vector and isobar maps. The vector maps illustrated regions of high and low velocity which could be prone to tube vibration and fouling. Separated regions were also in evidence. A non-uniform crossflow was discovered with, in general, higher velocities in the central plane of the bundle than near the shell wall._The form of the isobar maps calculated by FLOW3D was in good agreement with experimental results. In particular, larger pressure drops occurred across the inlet than outlet of a crossflow region and were higher near the upstream than downstream baffle face. The effect of baffle spacing and baffle leakage on crossflow and window pressure drop measurements was identified. Agreement between the current measurements, previously obtained data and commonly used design correlations/models was, in general, poor. This was explained in terms of the increased understanding of shellside flow. The bulk of previous data, which dervies from small-scale rigs with few tubes, have been shown to be unrepresentative of typical commerical units. The Heat Transfer and Fluid Flow Service design program TASC provided the best predictions of the current pressure drop results. However, a number of simple one-dimensional models in TASC are, individually, questionable. Some revised models have been proposed.
Resumo:
The 5-HT3 receptors are members of the cys-loop family of ligand-gated ion channels. Two functional subtypes are known, the homomeric 5HT3A and the heteromeric 5HT3A/B receptors, which exhibit distinct biophysical characteristics but are difficult to differentiate pharmacologically. Atomic force microscopy has been used to determine the stoichiometry and architecture of the heteromeric 5HT3A/B receptor. Each subunit was engineered to express a unique C-terminal epitope tag, together with six sequential histidine residues to facilitate nickel affinity purification. The 5-HT3 receptors, ectopically expressed in HEK293 cells, were solubilised, purified and decorated with antibodies to the subunit specific epitope tags. Imaging of individual receptors by atomic force microscopy revealed a pentameric arrangement of subunits in the order BBABA, reading anti-clockwise when viewed from the extracellular face. Homology models for the heteromeric receptor were then constructed using both the electron microscopic structure of the nicotinic acetylcholine receptor, from Torpedo marmorata, and the X-ray crystallographic structure of the soluble acetylcholine binding protein, from Lymnaea stagnalis, as templates. These homology models were used, together with equivalent models constructed for the homomeric receptor, to interpret mutagenesis experiments designed to explore the minimal recognition differences of both the natural agonist, 5-HT, and the competitive antagonist, granisetron, for the two human receptor subtypes. The results of this work revealed that the 5-HT3B subunit residues within the ligand binding site, for both the agonist and antagonist, are accommodating to conservative mutations. They are consistent with the view that the 5-HT3A subunit provides the principal and the 5-HT38 subunit the complementary recognition interactions at the binding interface.
Resumo:
We have used a high-energy ball mill to prepare single-phased nanocrystalline Fe, Fe90Ni10, Fe85Al4Si11, Ni99Fe1 and Ni90Fe10 powders. We then increased their grain sizes by annealing. We found that a low-temperature anneal (T < 0.4 Tm) softens the elemental nanocrystalline Fe but hardens both the body-centered cubic iron- and face-centered cubic nickel-based solid solutions, leading in these alloys to an inverse Hall–Petch relationship. We explain this abnormal Hall–Petch effect in terms of solute segregation to the grain boundaries of the nanocrystalline alloys. Our analysis can also explain the inverse Hall–Petch relationship found in previous studies during the thermal anneal of ball-milled nanocrystalline Fe (containing ∼1.5 at.% impurities) and electrodeposited nanocrystalline Ni (containing ∼1.0 at.% impurities).
Resumo:
It is well documented that facial disfigurements can generate avoidance responses in observers towards the afflicted person, yet less is known about the effect of a facial disfigurement on attention to and perception of faces. In two experiments we studied overt and covert attention to laterally presented face stimuli when these contained a unilateral disfiguring feature (a simulated portwine stain), an occluding feature, or no salient feature. In Experiment 1, observers’ eye movements were tracked while they explored laterally presented faces which they had to rate for attractiveness. Overt attention, as measured by the patterns of fixations on the face, was found to be significantly affected by the presence of a facial disfigurement or an occluder. In Experiment2, we used a covert orienting task with bilaterally presented target and distractor to measure the interference effect induced by a distractor face (disfigured, occluded, or normal) on a non facetarget discrimination task. The presence of a face increased response times to the target stimulus,but this interference was not modulated by the presence of a salient feature (disfigurement or occluder). Together, these results suggest that the presence of salient features affect overt but not the covert processing of faces.