2 resultados para evaporation rate

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A fundamental if poorly understood problem that hydrogels display is the tendency of these contact lens materials to dehydrate, causing certain complications of the corneal epithelium. However, recent studies have indicated that the evaporation rate of water from different hydrogel lenses is the same and the severity of conditions such as corneal staining is controlled by the states of water in the material. A study was therefore undertaken which concluded that increased corneal desiccating staining occurred as the proportion of water existing in the bound state decreased. The possibility of using dehydrated hydrogels as packaging materials with desiccating properties has also been investigated. As hydrogels have a high affinity for water they have adequate ability to function as a moisture scavenger in an enclosed atmosphere. It was concluded that this ability is maximised by a high total water content and an increase in the proportion of this water existing in the bound state for the material when it is fully hydrated. N-vinyl pyrrolidone has a low reactivity in vinyl polymerisation reactions which results in polymers with local domains of the same chemical type which can lead to deposition. As contact lenses comprising of this monomer are susceptible to deposition, a monomer with a higher reactivity in vinyl polymerisations is acryloylmorpholine and its incorporation in favour of NVP is encouraged. Unfortunately a large proportion of high EWC hydrogels are mechanically weak and attempts to increase this property by increasing hydrophobicity or cross-linking results in a decrease in EWC. Monomers with the potential to carry a positive charge were incorporated into a high EWC, AMO-HEMA copolymer and the physical properties were investigated. Although EWC increased, mechanical properties decreased only slightly. Therefore simultaneous incorporation of a positively charged monomer and a negatively charged monomer was investigated. The resulting copolymers showed increased water content and increased initial modulus. A technique for measuring the coefficient of friction of contact lenses during lubrication has been developed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Under ideal conditions ion plating produces finely grained dense coatings with excellent adhesion. The ion bombardment induced damage initiates a large number of small nuclei. Simultaneous coating and sputtering stimulates high rates of diffusion and forms an interfacial region of graded composition responsible for good adhesion. To obtain such coatings on components far industrial applications, the design and construction Of an ion plater with a 24" (O.6rn) diameter chamber were investigated and modifications of the electron beam gun were proposed. A 12" (O.3m) diameter ion plater was designed and constructed. The equipment was used to develop surfaces for solar energy applications. The conditions to give extended surfaces by sputter etching were studied. Austenitic stainless steel was sputter etched at 20 and 30 mTorr working pressure and at 3, 4 and 5 kV. Uniform etching was achieved by redesigning the specimen holder to give a uniform electrostatic field over the surfaces of the specimens. Surface protrusions were observed after sputter etching. They were caused by the sputter process and were independent of grain boundaries, surface contaminants and inclusions. The sputtering rate of stainless steel was highly dependent on the background pressure which should be kept below 10-5 Torr. Sputter etching improved the performance of stainless steel used as a solar selective surface. A twofold improvement was achieved on sputter etching bright annealed stainless steel. However, there was only slight improvement after sputter etching stainless steel which had been mechanically polished to a mirror finish. Cooling curves Were used to measure the thermal emittance of specimens.The deposition rate of copper was measured at different levels of power input and was found to be a maximum at 9.5 kW. The diameter of the copper feed rod was found to be critical for the maintenance of a uniform evaporation rate.