13 resultados para environmentally friendly
em Aston University Research Archive
Resumo:
There is considerable concern over the increased effect of fossil fuel usage on the environment and this concern has resulted in an effort to find alternative, environmentally friendly energy sources. Biomass is an available alternative resource which may be converted by flash pyrolysis to produce a crude liquid product that can be used directly to substitute for conventional fossil fuels or upgraded to a higher quality fuel. Both the crude and upgraded products may be utilised for power generation. A computer program, BLUNT, has been developed to model the flash pyrolysis of biomass with subsequent upgrading, refining or power production. The program assesses and compares the economic and technical opportunities for biomass thermochemical conversion on the same basis. BLUNT works by building up a selected processing route from a number of process steps through which the material passes sequentially. Each process step has a step model that calculates the mass and energy balances, the utilities usage and the capital cost for that step of the process. The results of the step models are combined to determine the performance of the whole conversion route. Sample results from the modelling are presented in this thesis. Due to the large number of possible combinations of feeds, conversion processes, products and sensitivity analyses a complete set of results is impractical to present in a single publication. Variation of the production costs for the available products have been illustrated based on the cost of a wood feedstock. The effect of selected macroeconomic factors on the production costs of bio-diesel and gasoline are also given.
Resumo:
The production of composite particles using dry powder coating is a one-step, environmentally friendly, process for the fabrication of particles with targeted properties and favourable functionalities. Diverse functionalities, such flowability enhancement, content uniformity, and dissolution, can be developed from dry particle coating. In this review, we discuss the particle functionalities that can be tailored and the selection of characterisation techniques relevant to understanding their molecular basis. We address key features in the powder blend sampling process and explore the relevant characterisation techniques, focussing on the functionality delivered by dry coating and on surface profiling that explores the dynamics and surface characteristics of the composite blends. Dry particle coating is a solvent- and heat-free process that can be used to develop functionalised particles. However, assessment of the resultant functionality requires careful selection of sensitive analytical techniques that can distinguish particle surface changes within nano and/or micrometre ranges.
Resumo:
An initial aim of this project was to evaluate the conventional techniques used in the analysis of newly prepared environmentally friendly water-borne automotive coatings and compare them with solvent-borne coatings having comparable formulations. The investigation was carried out on microtuned layers as well as on complete automotive multi-layer paint systems. Methods used included the very traditional methods of gloss and hardness and the commonly used photo-oxidation index (from FTIR spectral analysis). All methods enabled the durability to weathering of the automotive coatings to be initially investigated. However, a primary aim of this work was to develop methods for analysing the early stages of chemical and property changes in both the solvent-borne and water-borne coating systems that take place during outdoor natural weathering exposures and under accelerated artificial exposures. This was achieved by using dynamic mechanical analysis (DMA), in both tension mode on the microtomed films (on all depths of the coating systems from the uppermost clear-coat right down to the electron-coat) and bending mode of the full (unmicrotomed) systems, as well as MALDI-Tof analysis on the movement of the stabilisers in the full systems. Changes in glass transition temperature and relative cross-link density were determined after weathering and these were related to changes in the chemistries of the binder systems of the coatings after weathering. Concentration profiles of the UV-stabilisers (UVA and HALS) in the coating systems were analysed as a consequence of migration in the coating systems in separate microtomed layers of the paint samples (depth profiling) after weathering and diffusion co-efficient and solubility parameters were determined for the UV stabilisers in the coating systems. The methods developed were used to determine the various physical and chemical changes that take place during weathering of the different (water-borne and solvent-borne) systems (photoxidation). The solvent-borne formulations showed less changes after weathering (both natural and accelerated) than the corresponding water-borne formulations due to the lower level of cross-links in the binders of the water-borne systems. The silver systems examined were more durable than the blue systems due to the reflecting power of the aluminium and the lower temperature of the silver coatings.
Resumo:
Orimulsion400 is a new generation of the Orimulsion formula. This new generation is a more environmentally friendly, cost-effective energy source. This article describes the product's evolution as well as test results from diverse power plants.
Resumo:
Introduction: Production of functionalised particles using dry powder coating is a one-step, environmentally friendly process that paves the way for the development of particles with targeted properties and diverse functionalities. Areas covered: Applying the first principles in physical science for powders, fine guest particles can be homogeneously dispersed over the surface of larger host particles to develop functionalised particles. Multiple functionalities can be modified including: flowability, dispersibility, fluidisation, homogeneity, content uniformity and dissolution profile. The current publication seeks to understand the fundamental underpinning principles and science governing dry coating process, evaluate key technologies developed to produce functionalised particles along with outlining their advantages, limitations and applications and discusses in detail the resultant functionalities and their applications. Expert opinion: Dry particle coating is a promising solvent-free manufacturing technology to produce particles with targeted functionalities. Progress within this area requires the development of continuous processing devices that can overcome challenges encountered with current technologies such as heat generation and particle attrition. Growth within this field requires extensive research to further understand the impact of process design and material properties on resultant functionalities.
Resumo:
Full text: There are phrases in daily use today which were not so common a decade or so back, such as ‘ageing population’ or ‘climate changes’ or ‘emerging markets’ or even ‘social networking’. How do these things affect our lives is certainly interesting but for us as eye care practitioners how these changes affect our clinical work may be also relevant and sometimes more interesting. A recent advertisement for recruitment to the Royal Marine Corps of the British Army ended with a comment ‘find us on Facebook!’ The BCLA, IACLE and other organisations as well as many manufacturers have their own Facebook groups. In 2011 Chandni Thakkar was awarded the BCLA summer studentship and her project was based around increasing the contact lens business of a small independent optometric practice where contact lens sales were minimal. The practice typically recruited one new wearer per month. Chandni was able to increase the number of new patient fits with various strategies (her work was presented as poster at the 2012 BCLA conference in Birmingham). One of her strategies was to start a Facebook group and 655 joined the special group she started in just over a month. Interestingly she found that the largest single factor in convincing patients to trial contact lenses was recommendation by the eye care practitioner at the end of the examination, but nonetheless it is interesting that so many people used the social networking site to find out more information regarding contact lenses in her study. Moreover, we already see the use, by some practitioners, of smart phone ‘apps’ or electronic diaries or text messages when coordinating patient check-ups. Climate change has affected the way we think and act; we now leave out special recycle bins and we hope that the items that are recyclable are actually recycled and do not just join our other refuse somewhere down the track! How environmentally friendly are contact lenses? This was discussed by various speakers at this year's BCLA conference in Birmingham. Daily disposable lenses surely produce more contact lens waste but do not involve solutions in plastic bottles like monthly lenses. It is certainly something that manufacturers are taking seriously and of course there are environmental benefits but the cynic in each of us sees the marketing potential too. The way the ageing population is certainly something that will impact all healthcare providers. In the case of eye care with people living longer they will need refractive corrections for longer. Furthermore, since presbyopes are not resigning themselves to only gentle hobbies like knitting and gardening, but instead want to continue playing tennis or skiing or whatever, their visual demands are becoming more complex. This is certainly an area that contact lens manufacturers are focussing on (pun not intended!). Again the BCLA conference in Birmingham saw the launch of various new products by different companies to help us deal with our presbyopic contact lens wearers. It is great to have such choice and now with fitting methods becoming easier too we have no excuse not to try them out with our clients. Finally to emerging markets – well there was not a specific session at the BCLA conference in May discussing this but this most certainly would have been discussed by professional services managers and marketing directors of most of the contact lens companies. ‘How will we conquer China?’ ‘How can we increase our market share in Russia?’ Or ‘How should we spend our marketing budget in India?’ These topics as well as others would certainly have cropped up in backroom discussions. Certainly groups like IACLE (International Association of CL Educators) have increasing numbers of members and activities in developing markets to ensure that educators educate, to that practitioners can practice successfully and in turn patients can become successful contact lenses wearers. Companies also wish to increase their market share in these developing markets and from the point of view of CLAE we are certainly seeing more papers being submitted from these parts of the world. The traditional centres of knowledge are being challenged, I suppose as they have been throughout history, and this can only be a good thing for the pursuit of science. The BCLA conference in Birmingham welcomed more international visitors than ever, and from more countries, and long may that continue. Similarly, CLAE looks forward to a wider audience in years to come and a wider network of authors too.
Resumo:
Environmentally stable high-power erbium fiber soliton lasers are constructed by Kerr or carrier-type mode locking. We obtain high-energy pulses by using relatively short fiber lengths and providing large amounts of negative dispersion with chirped fiber Bragg gratings. The pulse energies and widths generated with both types of soliton laser are found to scale with the square root of the cavity dispersion. Kerr mode locking requires pulses with an approximately three times higher nonlinear phase shift in the cavity than carrier mode locking, which leads to the generation of slightly shorter pulses with as much as seven times higher pulse energies at the mode-locking threshold.
Resumo:
RFID is one of the contemporary technologies that has the potential to enable improved data gathering and cross-companies integration, and thus achieve cost efficiency. However, RFID has not yet become primary approach to collect data from the supply chain activities. This is partly due to (relative) high cost of implementation, partly due to technical deficiencies, as well as cross-company systems integration issues. This paper discusses a potential application area for RFID technology, which is environmentally sustainable supply chain management. The paper discusses the current practices in green supply chain management, and proposes possible applications of RFID enabling green supply chain management. The paper also proposes an idea of ad hoc RFID systems which are rapidly deployable and require minimal, if at all, pre-existing infrastructure. © 2010 IEEE.
Resumo:
Fifteen Miscanthus genotypes grown in five locations across Europe were analysed to investigate the influence of genetic and environmental factors on cell wall composition. Chemometric techniques combining near infrared reflectance spectroscopy and conventional chemical analyses were used to construct calibration models for determination of acid detergent lignin, acid detergent fibre, and neutral detergent fibre from sample spectra. The developed equations were shown to predict cell wall components with a good degree of accuracy and significant genetic and environmental variation was identified. The influence of nitrogen and potassium fertiliser on the dry matter yield and cell wall composition of M. x giganteus was investigated. A detrimental affect on feedstock quality was observed to result from application of these inputs which resulted in an overall reduction in concentrations of cell wall components and increased accumulation of ash within the biomass. Pyrolysis-gas chromatography-mass spectrometry and thermo-gravimetric analysis indicates that genotypes other than the commercially cultivated M. x giganteus have potential for use in energy conversion processes and in the bio-refining. The yields and quality parameters of the pyrolysis liquids produced from Miscanthus compared favourably with that produced from SRC willow and produced a more stable pyrolysis liquid with a higher lower heating value. Overall, genotype had a more significant effect on cell wall composition than environment. This indicates good potential for dissection of this trait by QTL analysis and also for plant breeding to produce new genotypes with improved feedstock characteristics for energy conversion.
Resumo:
Fifteen Miscanthus genotypes grown in five locations across Europe were analysed to investigate the influence of genetic and environmental factors on cell wall composition. Chemometric techniques combining near infrared reflectance spectroscopy (NIRS) and conventional chemical analyses were used to construct calibration models for determination of acid detergent lignin (ADL), acid detergent fibre (ADF), and neutral detergent fibre (NDF) from sample spectra. Results generated were subsequently converted to lignin, cellulose and hemicellulose content and used to assess the genetic and environmental variation in cell wall composition of Miscanthus and to identify genotypes which display quality traits suitable for exploitation in a range of energy conversion systems. The NIRS calibration models developed were found to predict concentrations with a good degree of accuracy based on the coefficient of determination (R2), standard error of calibration (SEC), and standard error of cross-validation (SECV) values. Across all sites mean lignin, cellulose and hemicellulose values in the winter harvest ranged from 76–115 g kg-1, 412–529 g kg-1, and 235–338 g kg-1 respectively. Overall, of the 15 genotypes Miscanthus x giganteus and Miscanthus sacchariflorus contained higher lignin and cellulose concentrations in the winter harvest. The degree of observed genotypic variation in cell wall composition indicates good potential for plant breeding and matching feedstocks to be optimised to different energy conversion processes.
Resumo:
N-doped ZnO/g-C3N4 hybrid core–shell nanoplates have been successfully prepared via a facile, cost-effective and eco-friendly ultrasonic dispersion method for the first time. HRTEM studies confirm the formation of the N-doped ZnO/g-C3N4 hybrid core–shell nanoplates with an average diameter of 50 nm and the g-C3N4 shell thickness can be tuned by varying the content of loaded g-C3N4. The direct contact of the N-doped ZnO surface and g-C3N4 shell without any adhesive interlayer introduced a new carbon energy level in the N-doped ZnO band gap and thereby effectively lowered the band gap energy. Consequently, the as-prepared hybrid core–shell nanoplates showed a greatly enhanced visible-light photocatalysis for the degradation of Rhodamine B compare to that of pure N-doped ZnO surface and g-C3N4. Based on the experimental results, a proposed mechanism for the N-doped ZnO/g-C3N4 photocatalyst was discussed. Interestingly, the hybrid core–shell nanoplates possess high photostability. The improved photocatalytic performance is due to a synergistic effect at the interface of the N-doped ZnO and g-C3N4 including large surface-exposure area, energy band structure and enhanced charge-separation properties. Significantly, the enhanced performance also demonstrates the importance of evaluating new core–shell composite photocatalysts with g-C3N4 as shell material.
Resumo:
Environmentally stable high-power erbium fiber soliton lasers are constructed by Kerr or carrier-type mode locking. We obtain high-energy pulses by using relatively short fiber lengths and providing large amounts of negative dispersion with chirped fiber Bragg gratings. The pulse energies and widths generated with both types of soliton laser are found to scale with the square root of the cavity dispersion. Kerr mode locking requires pulses with an approximately three times higher nonlinear phase shift in the cavity than carrier mode locking, which leads to the generation of slightly shorter pulses with as much as seven times higher pulse energies at the mode-locking threshold.
Resumo:
Herein, we demonstrate a template-free and eco-friendly strategy to synthesize hierarchical Ag3PO4 microcrystals with sharp corners and edges via silver–ammine complex at room temperature. The as-synthesized hierarchical Ag3PO4 microcrystals were characterized by X-ray diffraction, field-emission scanning electron microscope (FESEM), UV–vis diffuse reflectance spectroscopy (UV–vis DRS), BET surface area analyzer, and photoluminescence analysis (PL). Our results clearly indicated that the as-synthesized Ag3PO4 microcrystals possess a hierarchical structure with sharp corners and edges. More attractively, the adsorption ability and visible light photocatalytic activity of the as-synthesized hierarchical Ag3PO4 is much higher than that of conventional Ag3PO4.