7 resultados para environmental modeling
em Aston University Research Archive
Resumo:
Stochastic differential equations arise naturally in a range of contexts, from financial to environmental modeling. Current solution methods are limited in their representation of the posterior process in the presence of data. In this work, we present a novel Gaussian process approximation to the posterior measure over paths for a general class of stochastic differential equations in the presence of observations. The method is applied to two simple problems: the Ornstein-Uhlenbeck process, of which the exact solution is known and can be compared to, and the double-well system, for which standard approaches such as the ensemble Kalman smoother fail to provide a satisfactory result. Experiments show that our variational approximation is viable and that the results are very promising as the variational approximate solution outperforms standard Gaussian process regression for non-Gaussian Markov processes.
Resumo:
Dynamically adaptive systems (DASs) are intended to monitor the execution environment and then dynamically adapt their behavior in response to changing environmental conditions. The uncertainty of the execution environment is a major motivation for dynamic adaptation; it is impossible to know at development time all of the possible combinations of environmental conditions that will be encountered. To date, the work performed in requirements engineering for a DAS includes requirements monitoring and reasoning about the correctness of adaptations, where the DAS requirements are assumed to exist. This paper introduces a goal-based modeling approach to develop the requirements for a DAS, while explicitly factoring uncertainty into the process and resulting requirements. We introduce a variation of threat modeling to identify sources of uncertainty and demonstrate how the RELAX specification language can be used to specify more flexible requirements within a goal model to handle the uncertainty. © 2009 Springer Berlin Heidelberg.
Resumo:
The application of systems thinking to designing, managing, and improving business processes has developed a new "holonic-based" process modeling methodology. The theoretical background and the methodology are described using examples taken from a large organization designing and manufacturing capital goods equipment operating within a complex and dynamic environment. A key point of differentiation attributed to this methodology is that it allows a set of models to be produced without taking a task breakdown approach but instead uses systems thinking and a construct known as the "holon" to build process descriptions as a system of systems (i.e., a holarchy). The process-oriented holonic modeling methodology has been used for total quality management and business process engineering exercises in different industrial sectors and builds models that connect the strategic vision of a company to its operational processes. Exercises have been conducted in response to environmental pressures to make operations align with strategic thinking as well as becoming increasingly agile and efficient. This unique methodology is best applied in environments of high complexity, low volume, and high variety, where repeated learning opportunities are few and far between (e.g., large development projects). © 2007 IEEE.
Resumo:
John Bowlby's use of evolutionary theory as a cornerstone of his attachment theory was innovative in its day and remains useful. Del Giudice's target article extends Belsky et al.'s and Chisholm's efforts to integrate attachment theory with more current thinking about evolution, ecology, and neuroscience. His analysis would be strengthened by (1) using computer simulation to clarify and simulate the effects of early environmental stress, (2) incorporating information about non-stress related sources of individual differences, (3) considering the possibility of adaptive behavior without specific evolutionary adaptations, and (4) considering whether the attachment construct is critical to his analysis.
Resumo:
The number of interoperable research infrastructures has increased significantly with the growing awareness of the efforts made by the Global Earth Observation System of Systems (GEOSS). One of the Societal Benefit Areas (SBA) that is benefiting most from GEOSS is biodiversity, given the costs of monitoring the environment and managing complex information, from space observations to species records including their genetic characteristics. But GEOSS goes beyond simple data sharing to encourage the publishing and combination of models, an approach which can ease the handling of complex multi-disciplinary questions. It is the purpose of this paper to illustrate these concepts by presenting eHabitat, a basic Web Processing Service (WPS) for computing the likelihood of finding ecosystems with equal properties to those specified by a user. When chained with other services providing data on climate change, eHabitat can be used for ecological forecasting and becomes a useful tool for decision-makers assessing different strategies when selecting new areas to protect. eHabitat can use virtually any kind of thematic data that can be considered as useful when defining ecosystems and their future persistence under different climatic or development scenarios. The paper will present the architecture and illustrate the concepts through case studies which forecast the impact of climate change on protected areas or on the ecological niche of an African bird.
Resumo:
Self-adaptation is emerging as an increasingly important capability for many applications, particularly those deployed in dynamically changing environments, such as ecosystem monitoring and disaster management. One key challenge posed by Dynamically Adaptive Systems (DASs) is the need to handle changes to the requirements and corresponding behavior of a DAS in response to varying environmental conditions. Berry et al. previously identified four levels of RE that should be performed for a DAS. In this paper, we propose the Levels of RE for Modeling that reify the original levels to describe RE modeling work done by DAS developers. Specifically, we identify four types of developers: the system developer, the adaptation scenario developer, the adaptation infrastructure developer, and the DAS research community. Each level corresponds to the work of a different type of developer to construct goal model(s) specifying their requirements. We then leverage the Levels of RE for Modeling to propose two complementary processes for performing RE for a DAS. We describe our experiences with applying this approach to GridStix, an adaptive flood warning system, deployed to monitor the River Ribble in Yorkshire, England.
Resumo:
Poverty alleviation and social upliftment of rural India is closely linked with the availability and use of energy for development. At the same time, sustainable supply of clean and affordable renewable energy sources is required if development is to be sustainable, so that it does not cause any environmental problems. The purpose of this paper is to determine the key variables of renewable energy implementation for sustainable development, on which the top management should focus. In this paper, an interpretive structural modeling (ISM) - based approach has been employed to model the implementation variables of renewable energy for sustainable development. These variables have been categorized under ‘enablers’ that help to increase the implementation of renewable energy for sustainable development. A major finding of this research is that public awareness regarding renewable energy for sustainable development is a very significant enabler. In this paper, an interpretation of variables of renewable energy for sustainable development in terms of their driving and dependence powers has been examined. For better results, top management should focus on improving the high-driving power enablers such as leadership, strategic planning, public awareness, top management support, availability of finance, government support, and support from interest groups.