2 resultados para ent-16alpha,17-dihydroxykauran-19-oic acid
em Aston University Research Archive
Resumo:
1. The effects of arachidonic acid upon the volume-sensitive Cl- current present in cultured osteoblastic cells (ROS 17/2.8) was studied using the whole-cell patch-clamp technique. 2. Arachidonate produced two distinct phases of inhibition, a rapid phase occurring within 10-15 s of application preceding a slower phase that occurred 2 min after onset of arachidonate superfusion. Accompanying the slower inhibitory phase was an acceleration of the time-dependent inactivation exhibited by the current at strongly depolarized potentials (> + 50 mV). The half-maximal inhibitory concentrations (IC50) were 177 +/- 31 and 10 +/- 4 microM for the two phases respectively. 3. Arachidonate was still effective in the presence of inhibitors of cyclo-oxygenase (indomethacin, 10 microM), lipoxygenase (nordihydroguaretic acid, 10-100 microM) and cytochrome P450 (SKF525A, 100 microM; ethoxyresorufin, 10 microM; metyrapone, 500 microM; piperonyl butoxide, 500 microM; cimetidine, 1 mM). The effects of arachidonate could not be produced by another cis unsaturated fatty acid, oleic acid. 4. Measurements of cell volume showed that arachidonate effectively inhibited the regulatory volume decrease elicited by ROS 17/2.8 cells in response to a reduction in extracellular osmolarity. 5. It is concluded that the volume-sensitive Cl- conductance in ROS 17/2.8 cells is directly modulated by arachidonate and may represent a physiological mechanism by which volume regulation can be controlled in these cells.
Resumo:
Epidemiological studies previously identified cis-5,8,11,14,17-eicosapentaenoic acid (EPA) as the biologically active component of fish oil of benefit to the cardiovascular system. Although clinical investigations demonstrated its usefulness in surgical procedures, its mechanism of action still remained unclear. It was shown in this thesis, that EPA partially blocked the contraction of aortic smooth muscle cells to the vasoactive agents KCl and noradrenaline. The latter effect was likely caused by reducing calcium influx through receptor-operated channels, supporting a recent suggestion by Asano et al (1997). Consistently, EPA decreased noradrenaline-induced contractures in aortic tissue, in support of previous reports (Engler, 1992b). The observed effect of EPA on cell contractions to KCl was not simple due to blocking calcium influx through L-type channels, consistent with a previous suggestion by Hallaq et al (1992). Moreover, EPA caused a transient increase in [Ca2+]i in the absence of extracellular calcium. To resolve this it was shown that EPA increased inositol phosphate formation which, it is suggested, caused the release of calcium from an inositol phosphate-dependent internal binding site, possibly that of an intracellular membrane or superficial sarcoplasmic reticulum, producing the transient increase in [Ca2+]i. As it was shown that the cellular contractile filaments were not desensitised to calcium by EPA, it is suggested that the transient increase in [Ca2+]i subsequently blocks further cell contraction to KCl by activating membrane-associated potassium channels. Activation of potassium channels induces the cellular efflux of potassium ions, thereby hyperpolarising the plasma membrane and moving the membrane potential farther from the activation range for calcium channels. This would prevent calcium influx in the longer term and could explain the initial observed effect of EPA to block cell contraction to KCl.