11 resultados para energy values

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background - MHC Class I molecules present antigenic peptides to cytotoxic T cells, which forms an integral part of the adaptive immune response. Peptides are bound within a groove formed by the MHC heavy chain. Previous approaches to MHC Class I-peptide binding prediction have largely concentrated on the peptide anchor residues located at the P2 and C-terminus positions. Results - A large dataset comprising MHC-peptide structural complexes was created by re-modelling pre-determined x-ray crystallographic structures. Static energetic analysis, following energy minimisation, was performed on the dataset in order to characterise interactions between bound peptides and the MHC Class I molecule, partitioning the interactions within the groove into van der Waals, electrostatic and total non-bonded energy contributions. Conclusion - The QSAR techniques of Genetic Function Approximation (GFA) and Genetic Partial Least Squares (G/PLS) algorithms were used to identify key interactions between the two molecules by comparing the calculated energy values with experimentally-determined BL50 data. Although the peptide termini binding interactions help ensure the stability of the MHC Class I-peptide complex, the central region of the peptide is also important in defining the specificity of the interaction. As thermodynamic studies indicate that peptide association and dissociation may be driven entropically, it may be necessary to incorporate entropic contributions into future calculations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Most published surface wettability data are based on hydrated materials and are dominated by the air-water interface. Water soluble species with hydrophobic domains (such as surfactants) interact directly with the hydrophobic domains in the lens polymer. Characterisation of relative polar and non-polar fractions of the dehydrated material provides an additional approach to surface analysis. Method: Probe liquids (water and diiodomethane) were used to characterise polar and dispersive components of surface energies of dehydrated lenses using the method of Owens and Wendt. A range of conventional and silicone hydrogel soft lenses was studied. The polar fraction (i.e. polar/total) of surface energy was used as a basis for the study of the structural effects that influence surfactant persistence on the lens surface. Results: When plotted against water content of the hydrated lens, polar fraction of surface energy (PFSE) values of the dehydrated lenses fell into two rectilinear bands. One of these bands covered PFSE values ranging from 0.4 to 0.8 and contained only conventional hydrogels, with two notable additions: the plasma coated silicone hydrogels lotrafilcon A and B. The second band covered PFSE values ranging from 0.04 to 0.28 and contained only silicone hydrogels. Significantly, the silicone hydrogel lenses with lowest PFSE values (p<0.15) are found to be prone to lipid deposition duringwear. Additionally, more hydrophobic surfactants were found to be more persistent on lenses with lower PFSE values. Conclusions: Measurement of polar fraction of surface energy provides an importantmechanistic insight into surface interactions of silicone hydrogels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two energy grass species, switch grass, a North American tuft grass, and reed canary grass, a European native, are likely to be important sources of biomass in Western Europe for the production of biorenewable energy. Matching chemical composition to conversion efficiency is a primary goal for improvement programmes and for determining the quality of biomass feed-stocks prior to use and there is a need for methods which allow cost effective characterisation of chemical composition at high rates of sample through-put. In this paper we demonstrate that nitrogen content and alkali index, parameters greatly influencing thermal conversion efficiency, can be accurately predicted in dried samples of these species grown under a range of agronomic conditions by partial least square regression of Fourier transform infrared spectra (R2 values for plots of predicted vs. measured values of 0.938 and 0.937, respectively). We also discuss the prediction of carbon and ash content in these samples and the application of infrared based predictive methods for the breeding improvement of energy grasses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Project arose during a period in which the World was still coming to terms with the effects and implications of the so called 'energy crisis' of 1973/74. Serck Heat Transfer is a manufacturer of heat exchangers which transfer heat between fluids of various sorts. As such the company felt that past and possible future changes in the energy situation could have an impact upon the demand for its products. The thesis represents the first attempt to examine the impact of changes in the energy situation (a major economic variable) on the long term demand for heat exchangers. The scope of the work was limited to the United Kingdom, this being the largest single market for Serek's products. The thesis analyses industrial heat exchanger markets and identifies those trends which are related to both the changing energy situation and the usage of heat exchangers. These trends have been interpreted In terms of projected values of heat exchanger demand. The projections cover the period 197S to the year 2000. Also examined in the thesis is the future energy situation both internationally and nationally and it is found that in the long term there will be increasing pressure on consumers to conserve energy through rising real prices. The possibility of a connection between energy consumption and heat exchanger demand is investigated and no significant correlation found. This appears to be because there are a number of determinants of demand besides energy related factors and also there is a wide diversity of individual markets for heat exchangers. Conclusions are that in all markets, bar one, the changing energy situation should lead to a higher level of heat exchanger demand than would otherwise be the case had the energy situation not changed. It is also pointed out that it is misleading to look at changes in one influence on the demand for a product and ignore others.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Greenhouse cultivation is an energy intensive process therefore it is worthwhile to introduce energy saving measures and alternative energy sources. Here we show that there is scope for energy saving in fan ventilated greenhouses. Measurements of electricity usage as a function of fan speed have been performed for two models of 1.25 m diameter greenhouse fans and compared to theoretical values. Reducing the speed can cut the energy usage per volume of air moved by more than 70%. To minimize the capital cost of low-speed operation, a cooled greenhouse has been built in which the fan speed responds to sunlight such that full speed is reached only around noon. The energy saving is about 40% compared to constant speed operation. Direct operation of fans from solar-photovoltaic modules is also viable as shown from experiments with a fan driven by a brushless DC motor. On comparing the Net Present Value costs of the different systems over a 10 year amortization period (with and without a carbon tax to represent environmental costs) we find that sunlight-controlled system saves money under all assumptions about taxation and discount rates. The solar-powered system, however, is only profitable for very low discount rates, due to the high initial capital costs. Nonetheless this system could be of interest for its reliability in developing countries where mains electricity is intermittent. We recommend that greenhouse fan manufacturers improve the availability of energy-saving designs such as those described here.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The simultaneous use of willow as a vegetation filter and an energy crop can respond both to the increasing energy demand and to the problem of the soil and water contamination. Its characteristics guarantee that the resources are used economically. As a vegetation filter, willow uptakes organic and inorganic contaminants. As a fast growing energy crop it meets the requirements of rural areas without the exploitation of existing forestry. The aim of the research was to gather knowledge on the thermal behaviour of willow, uptaking contaminants and then used as an energy crop. For this reason pyrolysis experiments were performed in two different scales. In analytical scale metal-contaminated wood was investigated and bench scale pyrolysis experiments were performed with nitrogen-enriched willow, originated from a wastewater treatment plant. Results of the pyrolysis showed that 51-81 % of the wastewater derived nitrogen of willow was captured in the char product. Char had low surface area (1.4 to 5.4 m2/g), low bulk density (0.15–0.18 g/cm3), high pH values (7.8–9.4) and high water-holding capacity (1.8 to 4.3 cm3/g) while the bioavailability of char nutrients was low. Links were also established between the pyrolysis temperature and the product properties for maximising the biochar provided benefits for soil applications. Results also showed that the metal binding capacity of wood varied from one metal ion to another, char yield increased and levoglucosan yield decreased in their presence. While char yield was mainly affected by the concentration of the metal ions, levoglucosan yield was more dependent on the type of the ionic species. Combustion experiments were also carried out with metal-enriched char. The burnout temperatures, estimated ignition indices and the conversion indicate that the metal ions type and not the amount were the determining factors during the combustion. Results presented in the Thesis provide better understanding on the thermal behaviour of nitrogen-enriched and metal contaminated biomass which is crucial to design effective pyrolysis units and combustors. These findings are relevant for pyrolysis experiments, where the goal is to yield char for energetic or soil applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work describes the use of intermediate pyrolysis system to produce liquid, gaseous and solid fuels from pelletised wood and barley straw feedstock. Experiments were conducted in a pilot-scale system and all products were collected and analysed. The liquid products were separated into an aqueous phase and an organic phase (pyrolysis oil) under gravity. The oil yields were 34.1 wt.% and 12.0 wt.% for wood and barley straw, respectively. Analysis found that both oils were rich in heterocyclic and phenolic compounds and have heating values over 24 MJ/kg. The yields of char for both feedstocks were found to be about 30 wt.%, with heating values similar to that of typical sub-bituminous class coal. Gas yields were calculated to be approximately 20 wt.%. Studies showed that both gases had heating values similar to that of downdraft gasification producer gas. Analysis on product energy yields indicated the process efficiency was about 75%. © 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present paper offers a methodological approach towards the estimation and definition of enthalpies constituting an energy balance around a fast pyrolysis experiment conducted in a laboratory scale fluid bed with a capacity of 1 kg/ h. Pure N2 was used as fluidization medium at atmospheric pressure and the operating temperature (∼500°C) was adjusted with electrical resistors. The biomass feedstock type that was used was beech wood. An effort was made to achieve a satisfying 92.5% retrieval of products (dry basis mass balance) with the differences mainly attributed to loss of some bio-oil constituents into the quenching medium, ISOPAR™. The chemical enthalpy recovery for bio-oil, char and permanent gases is calculated 64.6%, 14.5% and 7.1%, respectively. All the energy losses from the experimental unit into the environment, namely the pyrolyser, cooling unit etc. are discussed and compared to the heat of fast pyrolysis that was calculated at 1123.5 kJ per kg of beech wood. This only represents 2.4% of the biomass total enthalpy or 6.5% its HHV basis. For the estimation of some important thermo-physical properties such as heat capacity and density, it was found that using data based on the identified compounds from the GC/MS analysis is very close to the reference values despite the small fraction of the bio-oil components detected. The methodology and results can help as a starting point for the proper design of fast pyrolysis experiments, pilot and/or industrial scale plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Geometric scaling of a Kerr-lens mode-locked Yb:YAG thin-disk oscillator yields femtosecond pulses with an average output power of 270 W. The scaled system delivers femtosecond (210-330 fs) pulses with a peak power of 38 MW. These values of average and peak power surpass the performance of any previously reported femtosecond laser oscillator operated in atmospheric air.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reactivity of chemically isolated lignocellulosic blocks, namely, α-cellulose, holocellulose, and lignin, has been rationalized on the basis of the dependence of the effective activation energy (Eα) upon conversion (α) determined via the popular isoconversional kinetic analysis, Friedman’s method. First of all, a detailed procedure for the thermogravimetric data preparation, kinetic calculation, and uncertainty estimation was implemented. Resulting Eα dependencies obtained for the slow pyrolysis of the extractive-free Eucalyptus grandis isolated α-cellulose and holocellulose remained constant for 0.05 < α < 0.80 and equal to 173 ± 10, 208 ± 11, and 197 ± 118 kJ/mol, thus confirming the single-step nature of pyrolysis. On the other hand, large and significant variations in Eα with α from 174 ± 10 to 322 ± 11 kJ/mol in the region of 0.05 and 0.79 were obtained for the Klason lignin and reported for the first time. The non-monotonic nature of weight loss at low and high conversions had a direct consequence on the confidence levels of Eα. The new experimental and calculation guidelines applied led to more accurate estimates of Eα values than those reported earlier. The increasing Eα dependency trend confirms that lignin is converted into a thermally more stable carbonaceous material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of vacuum, slow and fast pyrolysis processes to transfer energy from the paper waste sludge (PWS) to liquid and solid products was compared. Paper waste sludges with low and high ash content (8.5 and 46.7 wt.%) were converted under optimised conditions for temperature and pellet size to maximise both product yields and energy content. Comparison of the gross energy conversions, as a combination of the bio-oil/tarry phase and char (ECsum), revealed that the fast pyrolysis performance was between 18.5% and 20.1% higher for the low ash PWS, and 18.4% and 36.5% higher for high ash PWS, when compared to the slow and vacuum pyrolysis processes respectively. For both PWSs, this finding was mainly attributed to higher production of condensable organic compounds and lower water yields during FP. The low ash PWS chars, fast pyrolysis bio-oils and vacuum pyrolysis tarry phase products had high calorific values (∼18-23 MJ kg-1) making them promising for energy applications. Considering the low calorific values of the chars from alternative pyrolysis processes (∼4-7 MJ kg-1), the high ash PWS should rather be converted to fast pyrolysis bio-oil to maximise the recovery of usable energy products.