14 resultados para endo 1,4 beta xylanase
em Aston University Research Archive
Resumo:
One hundred sixty-eight multiply substituted 1,4-benzodiazepines have been prepared by a five-step solid-phase combinatorial approach using syn-phase crowns as a solid support and a hydroxymethyl-phenoxy-acetamido linkage (Wang linker). The substituents of the 1,4-benzodiazepine scaffold have been varied in the -3, -5, -7, and 8-positions and the combinatorial library was evaluated in a cholecystokinin (CCK) radioligand binding assay. 3-Alkylated 1,4-benzodiazepines with selectivity towards the CCK-B (CCK2) receptor have been optimized on the lipophilic side chain, the ketone moiety, and the stereochemistry at the 3-position. Various novel 3-alkylated compounds were synthesized and [S]3-propyl-5-phenyl-1,4-benzodiazepin-2-one, [S]NV-A, has shown a CCK-B selective binding at about 180 nM. Fifty-eight compounds of this combinatorial library were purified by preparative TLC and 25 compounds were isolated and fully characterized by TLC, IR, APCI-MS, and 1H/13C-NMR spectroscopy.
Resumo:
A novel synthetic approach towards N1-alkylated 3-propyl-1,4-benzodiazepines was developed in five synthetic steps from 2-amino-4-chlorobenzophenone, in which the N-oxide 4 served as a key intermediate. The structure-activity relationship optimization of this 3-prophyl-1,4-benzodiazepine template was carried out on the N1-position by selective alkylation reactions and resulted in a ligand with an improved affinity on the cholecystokinin (CCK2) receptor. The N-allyl-3-propyl-benzodiazepine 6d displayed an affinity towards the CCK2 (CCK-B) receptor of 170 nM in a radiolabelled receptor-binding assay. The anxiolytic activity of this allyl-3-propyl-1,4-benzodiazepine 6d was subsequently determined in in-vivo psychotropic assays. This novel ligand had ED50 values of 4.7 and 5.2 mg kg-1 in the black and white box test and the x-maze, respectively, and no significant sedation/muscle relaxation was observed.
Resumo:
A dry matrix application for matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) was used to profile the distribution of 4-bromophenyl-1,4-diazabicyclo(3.2.2)nonane-4-carboxylate, monohydrochloride (BDNC, SSR180711) in rat brain tissue sections. Matrix application involved applying layers of finely ground dry alpha-cyano-4-hydroxycinnamic acid (CHCA) to the surface of tissue sections thaw mounted onto MALDI targets. It was not possible to detect the drug when applying matrix in a standard aqueous-organic solvent solution. The drug was detected at higher concentrations in specific regions of the brain, particularly the white matter of the cerebellum. Pseudomultiple reaction monitoring imaging was used to validate that the observed distribution was the target compound. The semiquantitative data obtained from signal intensities in the imaging was confirmed by laser microdissection of specific regions of the brain directed by the imaging, followed by hydrophilic interaction chromatography in combination with a quantitative high-resolution mass spectrometry method. This study illustrates that a dry matrix coating is a valuable and complementary matrix application method for analysis of small polar drugs and metabolites that can be used for semiquantitative analysis.
Combinatorial approach to multi-substituted 1,4-Benzodiazepines as novel non-peptide CCK-antagonists
Resumo:
For the drug discovery process, a library of 168 multisubstituted 1,4-benzodiazepines were prepared by a 5-step solid phase combinatorial approach. Substituents were varied in the 3,5, 7 and 8-position on the benzodiazepine scaffold. The combinatorial library was evaluated in a CCK radiolabelled binding assay and CCKA (alimentary) and CCKB (brain) selective lead structures were discovered. The template of CCKA selective 1,4-benzodiazepin-2-ones bearing the tryptophan moiety was chemically modified by selective alkylation and acylation reactions. These studies provided a series of Asperlicin naturally analogues. The fully optimised Asperlicin related compound possessed a similar CCKA activity as the natural occuring compound. 3-Alkylated 1,4-benzodiazepines with selectivity towards the CCKB receptor subtype were optimised on A) the lipophilic side chain and B) the 2-aminophenyl-ketone moiety, together with some stereochemical changes. A C3 unit in the 3-position of 1,4-benzodiazepines possessed a CCKB activity within the nanomolar range. Further SAR optimisation on the N1-position by selective alkylation resulted in an improved CCKB binding with potentially decreased activity on the GABAA/benzodiazepine receptor complex. The in vivo studies revealed two N1-alkylated compounds containing unsaturated alkyl groups with anxiolytic properties. Alternative chemical approaches have been developed, including a route that is suitable for scale up of the desired target molecule in order to provide sufficient quantities for further in vivo evaluation.
Resumo:
A series of novel polymeric compounds of formula [M(btzb)3][ClO4]2 (Mll = Fe, Ni or Cu) with btzb = 1,4-bis-(tetrazol-1-yl)butane have been prepared and their physical properties investigated. The btzb ligand has been prepared and its crystal structure determined, together with a tentative crystal structure of the 3-D compound [Fe(btzb)3][ClO4]2. The model of the latter shows two symmetry-related, interpenetrating Fe-btzb networks in which the iron(II) ions approach each other as close as 8.3 and 9.1 Å. This supramolecular catenane undergoes a sharp thermal spin transition around 160 K with hysteresis (20 K) along with a pronounced thermochromic effect. The spin crossover behaviour has been followed by magnetic, DSC, optical spectroscopy and 57Fe Mössbauer spectroscopy measurements. Irradiation with green light at low temperature leads to population of the metastable high-spin state for the thermally active iron(ll) ions. The nature of the spin crossover behaviour has been discussed in detail.
Resumo:
[μ-Tris(1,4-bis(tetrazol-1-yl)butane-N4,N4‘)iron(II)] bis(hexafluorophosphate), [Fe(btzb)3](PF6)2, crystallizes in a three-dimensional 3-fold interlocked structure featuring a sharp two-step spin-crossover behavior. The spin conversion takes place between 164 and 182 K showing a discontinuity at about T1/2 = 174 K and a hysteresis of about 4 K between T1/2 and the low-spin state. The spin transition has been independently followed by magnetic susceptibility measurements, 57Fe-Mössbauer spectroscopy, and variable temperature far and midrange FTIR spectroscopy. The title compound crystallizes in the trigonal space group P30¯(No. 147) with a unit cell content of one formula unit plus a small amount of disordered solvent. The lattice parameters were determined by X-ray diffraction at several temperatures between 100 and 300 K. Complete crystal structures were resolved for 9 of these temperatures between 100 (only low spin, LS) and 300 K (only high spin, HS), Z = 1 [Fe(btzb)3](PF 6)2: 300 K (HS), a = 11.258(6) Å, c = 8.948(6) Å, V = 982.2(10) Å3; 100 K (LS), a = 10.989(3) Å, c = 8.702(2) Å, V = 910.1(4) Å3. The molecular structure consists of octahedral coordinated iron(II) centers bridged by six N4,N4‘ coordinating bis(tetrazole) ligands to form three 3-dimensional networks. Each of these three networks is symmetry related and interpenetrates each other within a unit cell to form the interlocked structure. The Fe−N bond lengths change between 1.993(1) Å at 100 K in the LS state and 2.193(2) Å at 300 K in the HS state. The nearest Fe separation is along the c-axis and identical with the lattice parameter c.
Resumo:
In the ciliate Paramecium, a variety of well characterized processes are regulated by Ca2+, e.g. exocytosis, endocytosis and ciliary beat. Therefore, among protozoa, Paramecium is considered a model organism for Ca2+ signaling, although the molecular identity of the channels responsible for the Ca2+ signals remains largely unknown. We have cloned - for the first time in a protozoan - the full sequence of the gene encoding a putative inositol (1,4,5)-trisphosphate (Ins(1,4,5)P3) receptor from Paramecium tetraurelia cells showing molecular characteristics of higher eukaryotic cells. The homologously expressed Ins(1,4,5)P3-binding domain binds [3H]Ins(1,4,5)P3, whereas antibodies unexpectedly localize this protein to the osmoregulatory system. The level of Ins(1,4,5)P3-receptor expression was reduced, as shown on a transcriptional level and by immuno-staining, by decreasing the concentration of extracellular Ca2+ (Paramecium cells rapidly adjust their Ca2+ level to that in the outside medium). Fluorochromes reveal spontaneous fluctuations in cytosolic Ca2+ levels along the osmoregulatory system and these signals change upon activation of caged Ins(1,4,5)P3. Considering the ongoing expulsion of substantial amounts of Ca2+ by the osmoregulatory system, we propose here that Ins(1,4,5)P3 receptors serve a new function, i.e. a latent, graded reflux of Ca2+ to fine-tune [Ca2+] homeostasis.
Resumo:
A series of substituted 4-(1-arylsulfonylindol-2-yl)-4-hydroxycyclohexa-2, 5-dien-1-ones (indolylquinols) has been synthesized on the basis of the discovery of lead compound 1a and screened for antitumor activity. Synthesis of this novel series was accomplished via the "one-pot" addition of lithiated (arylsulfonyl)indoles to 4,4-dimethoxycyclohexa-2,5-dienone followed by deprotection under acidic conditions. Similar methodology gave rise to the related naphtho-, 1H-indole-, and benzimidazole-substituted quinols. A number of compounds in this new series were found to possess in vitro human tumor cell line activity substantially more potent than the recently reported antitumor 4-substituted 4-hydroxycyclohexa-2,5-dien-1-ones1 with similar patterns of selectivity against colon, renal, and breast cell lines. The most potent compound in the series in vitro, 4-(1-benzenesulfonyl-6-fluoro-1H-indol- 2-yl)-4-hydroxycyclohexa-2,5-dienone (1h), exhibits a mean GI50 value of 16 nM and a mean LC50 value of 2.24 μM in the NCI 60-cell-line screen, with LC50 activity in the HCT 116 human colon cancer cell line below 10 nM. The crystal structure of the unsubstituted indolylquinol 1a exhibits two independent molecules, both participating in intermolecular hydrogen bonds from quinol OH to carbonyl O, but one OH group also interacts intramolecularly with a sulfonyl O atom. This interaction, which strengthens upon ab initio optimization, may influence the chemical environment of the bioactive quinol moiety. In vivo, significant antitumor activity was recorded (day 28) in mice bearing subcutaneously implanted MDA-MB-435 xenografts, following intraperitoneal treatment of mice with compound 1a at 50 mg/kg.
Resumo:
3-Amino-1,4-benzodiazepines as well as chemically related diverse amines were prepared from oxazepam and subsequently screened on the cholecystokinin receptor in a radiolabel binding assay. Oxazepam 2 was activated via its 3-chloro-1,4-benzodiazepine intermediate 3 and was reacted with a large series of aliphatic and aromatic amines. The substituted 3-anilino-1,4-benzodiazepine structure was identified as lead structure in a diverse series of 3-amino-1,4-benzodiazepines 4-38 and the full SAR (structure-activity relationship) optimisation provided 3-anilinobenzodiazepines 16-38 with CCK 1 receptor selectivity to CCK 2. The compounds 18, 24, 28 and 33 have shown affinities at the CCK 1 receptor of 11, 10, 11 and 9 nM, respectively. These equipotent CCK 1 ligands were fully evaluated in behaviour pharmacological essays. An antidepressant effect was identified in the tail suspension- and the Porsolt swimming-test. The ED 50 values for 24 and 28 were determined in these assays as 0.46 and 0.49 mg/kg. The mixed antagonist 37 showed in addition to the antidepressant effects anxiolytic properties. © 2006 Wiley-VCH Verlag GmbH & Co. KGaA.
Resumo:
Intercalation of an in situ prepared [Rh(OH)6]3- complex into an anion exchangeable Ni-Zn layered hydroxy double salt (Rh/NiZn) was demonstrated. The resulting Rh/NiZn effectively catalyzed the 1,4-addition of diverse enones and phenylboronic acids to their corresponding β-substituted carbonyl compounds. In the case of 2-cyclohexen-1-one and phenylboronic acid, a turnover frequency (TOF) of 920 h-1 based on Rh was achieved. The [Rh(OH)6]3- complex maintained its original monomeric trivalent state within the NiZn interlayer following catalysis, attributable to a strong electrostatic interaction between the NiZn host and anionic Rh(III) complex.
Resumo:
Oxazepam (4a) has been used as overall starting material in the synthesis of novel 2-substituted 1,4-benzodiazepines. By reacting Oxazepam 4a with commercially available hydrazines, hydrazides, semicarbazide, aminoguanidine and N,N-dimethylamino aniline in ethanol under acetic conditions, a series of diazenyl-1,4-benzodiazepines 5a-5i and 2-amino- 1,4-benzodiazepine 5k were obtained in good yields. These novel compounds served as new chemical entities (NCE) for testing in mice. The diazo-benzodiazepine 5d has shown a promising antidepressant effect in initial experiments in vivo at a dose of 5 mg/kg. The highly coloured 2-aminobenzodiazepine derivative 5k showed over a dose range from 5-50 mg/kg an analgesic effect in mice. © Singh et al.
Resumo:
Cellular thiols are critical moieties in signal transduction, regulation of gene expression, and ultimately are determinants of specific protein activity. Whilst protein bound thiols are the critical effector molecules, low molecular weight thiols, such as glutathione, play a central role in cytoprotection through (1) direct consumption of oxidants, (2) regeneration of protein thiols and (3) export of glutathione containing mixed disulphides. The brain is particularly vulnerable to oxidative stress, as it consumes 20% of oxygen load, contains high concentrations of polyunsaturated fatty acids and iron in certain regions, and expresses low concentrations of enzymic antioxidants. There is substantial evidence for a role for oxidative stress in neurodegenerative disease, where excitotoxic, redox cycling and mitochondrial dysfunction have been postulated to contribute to the enhanced oxidative load. Others have suggested that loss of important trophic factors may underlie neurodegeneration. However, the two are not mutually exclusive; using cell based model systems, low molecular weight antioxidants have been shown to play an important neuroprotective role in vitro, where neurotrophic factors have been suggested to modulate glutathione levels. Glutathione levels are regulated by substrate availability, synthetic enzyme and metabolic enzyme activity, and by the presence of other antioxidants, which according to the redox potential, consume or regenerate GSH from its oxidised partner. Therefore we have investigated the hypothesis that amyloid beta neurotoxicity is mediated by reactive oxygen species, where trophic factor cytoprotection against oxidative stress is achieved through regulation of glutathione levels. Using PC12 cells as a model system, amyloid beta 25-35 caused a shift in DCF fluorescence after four hours in culture. This fluorescence shift was attenuated by both desferioxamine and NGF. After four hours, cellular glutathione levels were depleted by as much as 75%, however, 24 hours following oxidant exposure, glutathione concentration was restored to twice the concentration seen in controls. NGF prevented both the loss of viability seen after 24 hours amyloid beta treatment and also protected glutathione levels. NGF decreased the total cellular glutathione concentration but did not affect expression of GCS. In conclusion, loss of glutathione precedes cell death in PC12 cells. However, at sublethal doses the surviving fraction respond to oxidative stress by increasing glutathione levels, where this is achieved, at least in part, at the gene level through upregulation of GCS. Whilst NGF does protect against oxidative toxicity, this is not achieved through upregulation of GCS or glutathione.
Resumo:
The spatial patterns of beta-amyloid (Abeta) deposits and neurofibrillary tangles (NFT) were studied in areas of the cerebral cortex in 16 patients with the late-onset, sporadic form of Alzheimer’s disease (AD). Diffuse, primitive, and classic Abeta deposits and NFT were aggregated into clusters; the clusters being regularly distributed parallel to the pia mater in many areas. In a significant proportion of regions, the sizes of the regularly distributed clusters approximated to those of the cells of origin of the cortico-cortical projections. The diffuse and primitive Abeta deposits exhibited a similar range of spatial patterns but the classic Abeta deposits occurred less frequently in large clusters >6400microm. In addition, the NFT often occurred in larger regularly distributed clusters than the Abeta deposits. The location, size, and distribution of the clusters of Abeta deposits and NFT supports the hypothesis that AD is a 'disconnection syndrome' in which degeneration of specific cortico-cortical and cortico-hippocampal pathways results in synaptic disconnection and the formation of clusters of NFT and Abeta deposits.