2 resultados para electronic device

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years the optical domain has been traditionally reserved for node-to-node transmission with the processing and switching achieved entirely in the electrical domain. However, with the constantly increasing demand for bandwidth and the resultant increase in transmission speeds, there is a very real fear that current electronic technology as used for processing will not be able to cope with future demands. Fuelled by this requirement for faster processing speeds, considerable research is currently being carried out into the potential of All-optical processing. One of the fundamental obstacles in realising All-optical processing is the requirement for All-optical buffering. Without all-optical buffers it is extremely difficult to resolve situations such as contention and congestion. Many devices have been proposed to solve this problem however none of them provide the perfect solution. The subject of this research is to experimentally demonstrate a novel all-optical memory device. Unlike many previously demonstrated optical storage devices the device under consideration utilises only a single loop mirror and a single SOA as its switch, whilst providing full regenerative capabilities required for long-term storage. I will explain some of the principles and characteristics of the device, which will then be experimentally demonstrated. The device configuration will then be studied and investigated as to its suitability for Hybrid Integrated Technology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

All-optical signal processing is a powerful tool for the processing of communication signals and optical network applications have been routinely considered since the inception of optical communication. There are many successful optical devices deployed in today’s communication networks, including optical amplification, dispersion compensation, optical cross connects and reconfigurable add drop multiplexers. However, despite record breaking performance, all-optical signal processing devices have struggled to find a viable market niche. This has been mainly due to competition from electro-optic alternatives, either from detailed performance analysis or more usually due to the limited market opportunity for a mid-link device. For example a wavelength converter would compete with a reconfigured transponder which has an additional market as an actual transponder enabling significantly more economical development. Never-the-less, the potential performance of all-optical devices is enticing. Motivated by their prospects of eventual deployment, in this chapter we analyse the performance and energy consumption of digital coherent transponders, linear coherent repeaters and modulator based pulse shaping/frequency conversion, setting a benchmark for the proposed all-optical implementations.